We present the first direct-detection search for sub-GeV dark matter using a new ∼2-gram high-resistivity Skipper CCD from a dedicated fabrication batch that was optimized for dark matter searches. Using 24 days of data acquired in the MINOS cavern at the Fermi National Accelerator Laboratory, we measure the lowest rates in silicon detectors of events containing one, two, three, or four electrons, and achieve world-leading sensitivity for a large range of sub-GeV dark matter masses. Data taken with different thicknesses of the detector shield suggest a correlation between the rate of high-energy tracks and the rate of single-electron events previously classified as "dark current." We detail key characteristics of the new Skipper CCDs, which augur well for the planned construction of the ∼100-gram SENSEI experiment at SNOLAB.
International audienceWe present results of a dark matter search performed with a 0.6 kg d exposure of the DAMIC experiment at the SNOLAB underground laboratory. We measure the energy spectrum of ionization events in the bulk silicon of charge-coupled devices down to a signal of 60 eV electron equivalent. The data are consistent with radiogenic backgrounds, and constraints on the spin-independent WIMP-nucleon elastic-scattering cross section are accordingly placed. A region of parameter space relevant to the potential signal from the CDMS-II Si experiment is excluded using the same target for the first time. This result obtained with a limited exposure demonstrates the potential to explore the low-mass WIMP region (<10 GeV c-2) with the upcoming DAMIC100, a 100 g detector currently being installed in SNOLAB
The Deep Underground Neutrino Experiment (DUNE) will be a world-class neutrino observatory and nucleon decay detector designed to answer fundamental questions about the nature of elementary particles and their role in the universe.
The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) uses low-noise fully depleted charge-coupled devices (CCDs) with the goal of measuring low-energy recoils from coherent elastic scattering (CEνNS) of reactor antineutrinos with silicon nuclei. This standard model process has not yet been observed at recoil energies below 20 keV. We report here the first results of the detector array deployed in 2016, with an active mass of 73.2 g (12 CCDs), which is operating at a distance of 30 m from the core of the Angra 2 nuclear reactor, with a thermal power of 3.8 GW. A search for neutrino events is performed by comparing data collected with reactor on (2.1 kg-day) and reactor off (1.6 kg-day). The results show no excess in the reactor-on data, reaching the world record sensitivity down to recoil energies of about 1 keV (0.1 keV electron-equivalent). A 95% confidence level limit for new physics is established at an event rate of 40 times the one expected from the standard model at this energy scale. The results presented here provide a new window to the low-energy neutrino physics, which allows one to explore for the first time the lowest energies accessible through the CEνNS with antineutrinos from nuclear reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.