In the human inflammatory myopathies (polymyositis and dermatomyositis), the early, widespread appearance of MHC class I on the surface of muscle cells and the occurrence of certain myositisspecific autoantibodies are striking features. We have used a controllable muscle-specific promoter system to up-regulate MHC class I in the skeletal muscles of young mice. These mice develop clinical, biochemical, histological, and immunological features very similar to human myositis. The disease is inflammatory, limited to skeletal muscles, self-sustaining, more severe in females, and often accompanied by autoantibodies, including, in some mice, autoantibodies to histidyl-tRNA synthetase, the most common specificity found in the spontaneous human disease, anti-Jo-1. This model suggests that an autoimmune disease may unfold in a highly specific pattern as the consequence of an apparently nonspecific event-the sustained up-regulation of MHC class I in a tissue-and that the specificity of the autoantibodies derives not from the specificity of the stimulus, but from the context, location, and probably the duration of the stimulus. This model further suggests that the presumed order of events as an autoimmune disease develops needs to be reconsidered.
Both osteoporosis and cardiovascular disease (CVD) are major public health problems leading to increased morbidity and mortality. Although traditionally viewed as separate disease entities that increase in prevalence with aging, accumulating evidence indicates that there are similar pathophysiological mechanisms underlying both diseases. In addition to menopause and advanced age, other risk factors for CVD such as dyslipidemia, oxidative stress, inflammation, hyperhomocystinemia, hypertension, and diabetes have also been associated with increased risk of low bone mineral density (LBMD). Elevated LDL and low HDL cholesterol are associated with LBMD, altered lipid metabolism is associated with both bone remodeling and the atherosclerotic process, which might explain, in part, the co-existence of osteoporosis and atherosclerosis in patients with dyslipidemia. Similarly, inflammation plays a pivotal role in both atherosclerosis and osteoporosis. Elevated plasma homocysteine levels are associated with both CVD and osteoporosis. Nitric oxide (NO), in addition to its known atheroprotective effects, appears to also play a role in osteoblast function and bone turnover. Supporting this notion, in a small randomized controlled trial, nitroglycerine (an NO donor) was found to be as effective as estrogen in preventing bone loss in women with surgical menopause. Statins, agents that reduce atherogenesis, also stimulate bone formation. Furthermore, bis- phosphonates, used in the treatment of osteoporosis, have been shown to inhibit atherogenesis. Intravenous bisphosphonate therapy significantly decreases serum LDL and increases HDL in postmenopausal women The exciting possibilities of newer pharmacological agents that effectively treat both osteoporosis and CVD hold considerable promise. However, it is important to emphasize that the current evidence linking both of these diseases is far from conclusive. Therefore, additional research is necessary to further characterize the relationship between these two common illnesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.