Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite‐mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α‐ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2‐oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss‐of‐function and gain‐of‐function mouse models, we showed that OXGR1 is essential for AKG‐mediated exercise‐induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.
Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific
serpina1e
deletion mouse model, we further demonstrated that liver
serpina1e
is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)–dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the
seprina1e
promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule.
Background/Aims: Brown adipose tissue (BAT) is critical for mammals’ survival in the cold environment. BAT-dependent non-shivering thermogenesis is attributed to uncoupling protein 1 (UCP1)’s disengagement of oxidative phosphorylation from ATP synthesis and dissipates energy as heat. Thus individuals with a substantial amount of BAT are better equipped during cold stress and less likely to become obese. Recently, our laboratory has shown pig adipocytes have no UCP1 protein. The inability of newborn piglets to generate heat contributed to its high death rate. Repairing the genetic defect of UCP1 in pig adipocytes has implications in defending against cold for piglets and developing an alternative treatment for human obesity. Methods: Q-PCR, western blotting (WB) and oxygen consumption measurement were used to enable functional UCP1 protein in preadipocytes. Immunoprecipitation (IP), chromatin immunoprecipitation (CHIP), and dual-luciferase reporter assay system were used to clarify the thermogenesis mechanism of functional UCP1. Results: Only co-overexpressing mice UCP1 and pig PGC-1α increased not only the mitochondrial number but also the uncoupled respiration rate in the transfected pig adipocytes. The functional mice UCP1 increased the pig PGC-1α activity through the AMPK-SIRT1 pathway. The active form PGC-1α interacted with transcription factors Lhx8, Zic1, ERRα, and PPARα to regulate the expression of mitochondrial energy metabolism and adipocytes browning-related genes. Conclusion: Our data suggest a model in which pig PGC-1α and mice UCP1 work collaboratively to restore uncoupling respiration in pig preadipocytes. These results have great implications for piglet survival and developing an alternative treatment for human obesity in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.