Background: The present study aims to investigate the role of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons in chronic pain including thermal hyperalgesia and mechanical allodynia. Chronic inflammatory nociception of rats was produced by intraplantar injection of complete Freund's adjuvant (CFA) and data was collected until day 28 following injection.
Bone cancer pain has a strong impact on the quality of life of patients, but is difficult to treat. Better understanding of the pathogenic mechanisms underlying bone cancer pain will likely lead to the development of more effective treatments. In the present study, we investigated whether inhibition of KCNQ/M channels contributed to the hyperexcitability of primary sensory neurons and to the pathogenesis of bone cancer pain. By using a rat model of bone cancer pain based on intratibial injection of MRMT-1 tumour cells, we documented a prominent decrease in expression of KCNQ2 and KCNQ3 proteins and a reduction of M-current density in small-sized dorsal root ganglia (DRG) neurons, which were associated with enhanced excitability of these DRG neurons and the hyperalgesic behaviours in bone cancer rats. Coincidently, we found that inhibition of KCNQ/M channels with XE-991 caused a robust increase in the excitability of small-sized DRG neurons and produced an obvious mechanical allodynia in normal rats. On the contrary, activation of the KCNQ/M channels with retigabine not only inhibited the hyperexcitability of these small DRG neurons, but also alleviated mechanical allodynia and thermal hyperalgesia in bone cancer rats, and all of these effects of retigabine could be blocked by KCNQ/M-channel antagonist XE-991. These results suggest that repression of KCNQ/M channels leads to the hyperexcitability of primary sensory neurons, which in turn causes bone cancer pain. Thus, suppression of KCNQ/M channels in primary DRG neurons plays a crucial role in the development of bone cancer pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.