Construction of composite materials based on the self-assembly of fluorescently labeled biomolecules with a variety of micro- or nano-quenching materials (by the Förster Resonance Energy Transfer mechanism) for the fluorogenic recognition of disease-related proteins has become a dynamic research topic in the field of fluorescence recognition. Here we summarize the recent progress on the composition of fluorescence dye-labeled biomolecules including sugars, peptides and nucleotides with organic (graphene and carbon nanotubes) and inorganic (gold nanoparticles) materials. Their application in the fluorescence detection of proteins and enzymes on both the molecular and cellular levels is discussed. Perspectives are proposed with respect to the future directions of employing these composite materials in the recognition of pathological proteins.
With the ever‐increasing threat posed by the multi‐drug resistance of bacteria, the development of non‐antibiotic agents for the broad‐spectrum eradication of clinically prevalent superbugs remains a global challenge. Here, we demonstrate the simple supramolecular self‐assembly of structurally defined graphene nanoribbons (GNRs) with a cationic porphyrin (Pp4N) to afford unique one‐dimensional wire‐like GNR superstructures coated with Pp4N nanoparticles. This Pp4N/GNR nanocomposite displays excellent dual‐modal properties with significant reactive‐oxygen‐species (ROS) production (in photodynamic therapy) and temperature elevation (in photothermal therapy) upon light irradiation at 660 and 808 nm, respectively. This combined approach proved synergistic, providing an impressive antimicrobial effect that led to the complete annihilation of a wide spectrum of Gram‐positive, Gram‐negative, and drug‐resistant bacteria both in vitro and in vivo. The study also unveils the promise of GNRs as a new platform to develop dual‐modal antimicrobial agents that are able to overcome antibiotic resistance.
BackgroundLymphangiogenesis has become a new research frontier in tumor metastasis since the discovery of reliable lymphatic markers that have allowed observation and isolation of lymphatic endothelium. Cyclooxygenase-2 (COX-2) has been reported to be involved in the critical steps in carcinogenesis. However, possible role of COX-2 in lymphangiogenesis and lymphatic metastasis is still poorly understood. In present study, we aimed to investigate the relationship between vascular endothelial growth factor-C (VEGF-C) and COX-2 in human breast cancer, and correlations with lymphangiogenesis and prognosis.MethodsTissue samples of primary tumors from 70 patients undergoing intentionally curative surgical resections for breast cancer were immunohistochemically examined for VEGF-C, COX-2, and D2-40 expressions. The association between COX-2 and VEGF-C expressions and clinicopathological parameters as well as prognosis were analysised. To demonstrate the presence of proliferating lymphatic endothelial cells, 10 random cases with high LVD counts were selected for D2-40/Ki-67 double immunostaining.ResultsA significant correlation was found between the expression of VEGF-C and COX-2 (r = 0.529, P < 0.001), and both elevated VEGF-C expression and elevated COX-2 expression were associated with higher lymph vessel density (LVD), lymph node metastasis and D2-40 positive lymphatic invasion (LVI) as well as worse disease free survival (DFS) and overall survival (OS) in a univariate analysis. In the double immunostain for the lymph vessel marker D2-40 and the proliferation marker Ki-67, the results confirmed Ki-67-positive nuclei in a proportion of lymph vessel endothelial cells.ConclusionThere is indeed lymphangiogenesis in breast cancer, the most compelling evidence being the presence of proliferating lymphatic endothelial cells. VEGF-C and COX-2 are coexpressed and significantly associated with lymphangiogenesis and prognosis in invasive breast cancer. Suggesting COX-2 may up-regulate VEGF-C expression and thus promote lymph node metastasis via lymphangiogenesis pathway in human breast cancer.
This study depicts the 'click' construction of a water-soluble galactosyl rhodamine that can selectively probe mercury ions internalized by hepatoma cells over other cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.