Key Points
Increased quiescence of HSCs and HPCs in leukemogenesis, and reversible suppression of HSCs was observed in leukemic bone marrow. A novel inhibitory role of Egr3 in HSC proliferation was revealed by leukemic infiltration in bone marrow.
High throughput single-cell RNA-seq has been successfully implemented to dissect the cellular and molecular features underlying hematopoiesis. However, an elaborate and comprehensive transcriptome reference of the whole blood system is lacking. Here, we profiled the transcriptomes of 7,551 human blood cells representing 32 immunophenotypic cell types, including hematopoietic stem cells, progenitors and mature blood cells derived from 21 healthy donors. With high sequencing depth and coverage, we constructed a single-cell transcriptional atlas of blood cells (ABC) on the basis of both protein-coding genes and long noncoding RNAs (lncRNAs), and showed a high consistence between them. Notably, putative lncRNAs and transcription factors regulating hematopoietic cell differentiation were identified. While common transcription factor regulatory networks were activated in neutrophils and monocytes, lymphoid cells dramatically changed their regulatory networks during differentiation. Furthermore, we showed a subset of nucleated erythrocytes actively expressing immune signals, suggesting the existence of erythroid precursors with immune functions. Finally, a web portal offering transcriptome browsing and blood cell type prediction has been established. Thus, our work provides a transcriptional map of human blood cells at single-cell resolution, thereby offering a comprehensive reference for the exploration of physiological and pathological hematopoiesis.
Macrophages exhibit phenotypic heterogeneity under both physiological and pathological conditions. Applications targeting M2-like tumor-associated macrophages (TAMs) improve outcome in solid tumors. Considerable differences are detected between leukemia-associated macrophages (LAMs) and TAMs. However, application to induce M1 characteristics in heterogeneous LAMs has not been established. Here we analyzed clinical relevance of macrophage phenotypes in human acute myeloid leukemia (AML), studied phenotypic evolution of bone marrow (BM) and spleen (SP) LAMs in mouse AML and T cell acute lymphoblastic leukemia (T-ALL) models, explored mechanism leading to different LAM phenotypes and tried to eliminate pro-leukemic effects by inducing M1 characteristics. The results showed that more M2-like LAMs but not total LAMs correlated with worse prognosis in AML patients. Heterogeneity of LAM activation in tissue-specific leukemic microenvironments was observed in both AML and ALL models, SP LAMs evolved with more M2 characteristics while BM LAMs with more M1 characteristics. Furthermore, IRF7 contributed to M1 characteristics through the activation of SAPK/JNK pathway. Moreover, targeting IRF7-SAPK/JNK pathway to induce M1 characteristics in LAMs contributed to prolonged survival in leukemia mice. Our study provides the potential target for macrophage based immuno-therapy strategy against leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.