An outbreak of a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began in December 2019. Accurate, rapid, convenient, and relatively inexpensive diagnostic methods for SARS-CoV-2 infection are important for public health and optimal clinical care. The current gold standard for diagnosing SARS-CoV-2 infection is reverse transcription-polymerase chain reaction (RT-PCR). However, RTPCR assays are designed for use in well-equipped laboratories with sophisticated laboratory infrastructure and highly trained technicians, and are unsuitable for use in under-equipped laboratories and in the field. In this study, we report the development of an accurate, rapid, and easy-to-implement isothermal and nonenzymatic signal amplification system (a catalytic hairpin assembly (CHA) reaction) coupled with a lateral flow immunoassay (LFIA) strip-based detection method that can detect SARSCoV-2 in oropharyngeal swab samples. Our method avoids RNA isolation, PCR amplification, and elaborate result analysis, which typically takes 6–8 hours. The entire CHA-LFIA detection method, from nasopharyngeal sampling to obtaining test results, takes less than 90 minutes. Such methods are simple and require no expensive equipment, only a simple thermostatically controlled water bath and a fluorescence reader device. We validated our method using synthetic oligonucleotides and clinical samples from 15 patients with SARS-CoV-2 infection and 15 healthy individuals. Our detection method provides a fast, simple, and sensitive (with a limit of detection (LoD) of 2,000 copies/mL) alternative to the SARS-CoV-2 RT-PCR assay, with 100% positive and negative predictive agreements.
The development of electrochemiluminescent (ECL) emitters with both intense ECL and excellent film-forming properties is highly desirable for biosensing applications. Herein, a facile one-pot preparation strategy was proposed for the synthesis of a self-enhanced ECL emitter by co-doping Ru(bpy)3 2+ and (diethylaminomethyl)triethoxysilane (DEAMTES) into an in situ-produced silica nanohybrid (DEAMTES@RuSiO2). DEAMTES@RuSiO2 not only possessed improved ECL properties but also exhibited outstanding film-forming ability, which are both critical for the construction of ECL biosensors. By coupling branched catalytic hairpin assembly with efficient signal amplification peculiarity, a label-free ECL biosensor was further constructed for the convenient and highly sensitive detection of miRNA-21. The as-fabricated ECL biosensor displayed a detection limit of 8.19 fM, much lower than those in previous reports for miRNA-21 and showed superior reliability for detecting miRNA-21-spiked human serum sample, demonstrating its potential for applications in miRNA-associated fundamental research and clinical diagnosis.
The problems of environmental security and the potential risks of human health caused by transgenic crops have attracted much attention. Recent studies reveal 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 protein (CP4-EPSPS), which shows very high resistance to herbicide glyphosate, is a typical biomarker of genetically modified (GM) crops. For this reason, it is highly anticipated to devise a sensitive and convenient strategy to detect CP4-EPSPS protein in crops. Herein, we report a simple electrochemical immunosensor by coupling nanobody, ordered mesoporous carbon (OMC), and thionine (Th). As a capture agent, the nanobody was screened out from an immunized Bactrian camel, and exhibited superior properties with respect to conventional antibody, such as higher stability and stronger heat resistance. Moreover, OMC offered an effective platform with high surface area, electrical conductivity, and biocompatibility, which greatly facilitated the assembly of redox probe Th, and further coupling of large amount of capture nanobodies. As a result, the CP4-EPSPS protein could be determined with high sensitivity and efficiency by differential pulse voltammetry (DPV) in a wide linear range from 0.001 to 100 ng·mL with a low detection limit of 0.72 pg·mL, which was more than 3 orders of magnitude lower than those of previously reported works. As an example, the proposed electrochemical immunosensor was successfully applied to spiked samples, demonstrating its great potential in CP4-EPSPS screening and detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.