A triple-layer matrix Collagen/Silk fibroin/Bioactive glass composited Nanofibrous was fabricated by linking electrospinning and freeze-drying systems, this typical three layered composite with a nanofibrous fragment as the key (top) layer, middle portion as inferior, and a spongy porous fragment as the third (bottom) deposit to develop the synergistic effect of composite materials resultant to physical and biological performances. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy were used to assess the final material's physicochemical properties (SEM). The triple-layer matrix had a nanofibrous and porous structure, which has qualities including high porosity, swelling, and stability, which are important in soft-tissue engineering. NIH 3 T3 fibroblast and humanoid keratinocyte (HaCaT) cell lines were also used to investigate the matrix's in vitro biological and fluorescent capabilities, which showed excellent cell adherence and proliferation across the composite layers. The synergistic arrangement of nanofibrous substantial deposition onto collagenous with silk fibroin candidates has therefore proven effective in the construction of a tri-layer matrix for skintissue-engineering applications. K E Y W O R D S bioactive glass, collagen, electrospun, silk fibroin, tri-layer composite, wound repair antibacterial Key Messages • collagen (COL) and Silk fibroin (SF) prepared from fish scale and silkworm cocoons • COL:SF successfully introduced into Bioactive glass(BG) for COL:SF:BG trilayer electrospun composite Minlie Yang and Shun Yu are first author contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.