BACKGROUND & AIMS Tight junction dysregulation and epithelial damage contribute to barrier loss in patients with inflammatory bowel disease (IBD). However, the mechanisms that regulate these processes and their relative contributions to disease pathogenesis are incompletely understood. We investigated these processes using colitis models in mice. METHODS We induced colitis by adoptive transfer of CD4+CD45RBhi cells or administration of dextran sulfate sodium (DSS) to mice, including those deficient in tumor necrosis factor receptor (TNFR) 1, TNFR2, or the long isoform of myosin light chain kinase (MLCK). Intestinal tissues and isolated epithelial cells were analyzed by immunoblot, immunofluorescence, ELISA, and real-time PCR assays. RESULTS Induction of immune-mediated colitis by CD4+CD45RBhi adoptive transfer increased intestinal permeability; epithelial expression of claudin-2, the long isoform of MLCK, and TNFR2 (but not TNFR1); and phosphorylation of the myosin II light chain (MLC). Long MLCK upregulation, MLC phosphorylation, barrier loss, and weight loss were attenuated in TNFR2−/−, but not TNFR1−/−, recipients of wildtype CD4+CD45RBhi cells. Similarly, long MLCK−/− mice had limited increases in MLC phosphorylation, claudin-2 expression, and intestinal permeability and delayed onset of cell transfer-induced colitis. However, coincident with onset of epithelial apoptosis, colitis ultimately developed. This indicates that disease progresses via apoptosis in the absence of MLCK-dependent tight junction regulation. In support of this conclusion, long MLCK−/− mice were not protected from epithelial apoptosis-mediated, damage-dependent DSS colitis. CONCLUSIONS In immune-mediated IBD models, TNFR2 signaling increases long MLCK expression, resulting in tight junction dysregulation, barrier loss and induction of colitis. At advanced stages, colitis progresses by apoptosis and mucosal damage that results in tight junction- and MLCK-independent barrier loss. Therefore, barrier loss in immune-mediated colitis occurs via two temporally and morphologically distinct mechanisms. Differential targeting of these mechanisms may lead to improved IBD therapies.
SUMMARY Diarrhea is a host response to enteric pathogens, but its impact on pathogenesis remains poorly defined. By infecting mice with the attaching and effacing bacteria Citrobacter rodentium, we defined the mechanisms and contributions of diarrhea and intestinal barrier loss to host defense. Increased permeability occurred within 2 days of infection and coincided with IL-22-dependent upregulation of the epithelial tight junction protein claudin-2. Permeability increases were limited to small molecules, as expected for the paracellular water and Na+ channel formed by claudin-2. Relative to wildtype, claudin-2-deficient mice experienced severe disease, including increased mucosal colonization by C. rodentium, prolonged pathogen shedding, exaggerated cytokine responses, and greater tissue injury. Conversely, transgenic claudin-2 overexpression reduced disease severity. Chemically-induced osmotic diarrhea reduced colitis severity and C. rodentium burden in claudin-2 deficient, but not transgenic, mice, demonstrating that claudin-2-mediated protection is the result of enhanced water efflux. Thus, IL-22-induced claudin-2 upregulation drives diarrhea and pathogen clearance.
BACKGROUND & AIMSEmerging data suggest that changes in intestinal permeability and increased gut microbial translocation contribute to the inflammatory pathway involved in nonalcoholic steatohepatitis (NASH) development. Numerous studies have investigated the association between increased intestinal permeability and NASH. Our meta-analysis of this association investigates the underlying mechanism.METHODSA meta-analysis was performed to compare the rates of increased intestinal permeability in patients with NASH and healthy controls. To further address the underlying mechanism of action, we studied changes in intestinal permeability in a diet-induced (methionine-and-choline-deficient; MCD) murine model of NASH. In vitro studies were also performed to investigate the effect of MCD culture medium at the cellular level on hepatocytes, Kupffer cells, and intestinal epithelial cells.RESULTSNonalcoholic fatty liver disease (NAFLD) patients, and in particular those with NASH, are more likely to have increased intestinal permeability compared with healthy controls. We correlate this clinical observation with in vivo data showing mice fed an MCD diet develop intestinal permeability changes after an initial phase of liver injury and tumor necrosis factor-α (TNFα) induction. In vitro studies reveal that MCD medium induces hepatic injury and TNFα production yet has no direct effect on intestinal epithelial cells. Although these data suggest a role for hepatic TNFα in altering intestinal permeability, we found that mice genetically resistant to TNFα-myosin light chain kinase (MLCK)–induced intestinal permeability changes fed an MCD diet still develop increased permeability and liver injury.CONCLUSIONSOur clinical and experimental results strengthen the association between intestinal permeability increases and NASH and also suggest that an early phase of hepatic injury and inflammation contributes to altered intestinal permeability in a fashion independent of TNFα and MLCK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.