Histone acetylation is a chromatin modification critically involved in gene regulation during many neural processes. The enzymes that regulate levels of histone acetylation are histone acetyltransferases (HATs), which activate gene expression and histone deacetylases (HDACs), that repress gene expression. Acetylation together with other histone and DNA modifications regulate transcription profiles for specific cellular functions. Our previous research has demonstrated a pivotal role for cyclicAMP response element binding protein (CREB)-binding protein (CBP), a histone acetyltransferase, in long-term memory for novel object recognition (NOR). In fact, every genetically modifiedCbp mutant mouse characterized thus far exhibits impaired long-term memory for NOR. These results suggest that long-term memory for NOR is especially sensitive to alterations in CBP activity. Thus, in the current study, we examined the role of HDACs in memory for NOR. We found that inducing a histone hyperacetylated state via HDAC inhibition transforms a learning event that would not normally result in long-term memory into an event that is now remembered long-term. We have also found that HDAC inhibition generates a type of long-term memory that persists beyond a point at which normal memory for NOR fails. This result is particularly interesting because one alluring aspect of examining the role of chromatin modifications in modulating transcription required for long-term memory processes is that these modifications may provide potentially stable epigenetic markers in the service of activating and/or maintaining transcriptional processes.CBP ͉ chromatin ͉ epigenetic ͉ acetylation ͉ CREB
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after IA training or retrieval. Memory retention was tested at different time points after drug infusion. Rapamycin impaired long-term IA retention when given before or immediately after training or retrieval into the BLA. When infused into the DH, rapamycin produced memory impairment when given before training or immediately after retrieval. The impairing effects of post-retrieval rapamycin required memory retrieval and were not reversed by a reminder shock. The results provide the first evidence that mTOR in the BLA and DH might play a role in IA memory reconsolidation.
Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup. This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup-treated adult zebrafish demonstrated a significant impairment in memory. Both glyphosate and Roundup reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup, altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.