Huntingtin is the protein mutated in Huntington's disease, a devastating neurodegenerative disorder. We demonstrate here that huntingtin is essential to control mitosis. Huntingtin is localized at spindle poles during mitosis. RNAi-mediated silencing of huntingtin in cells disrupts spindle orientation by mislocalizing the p150(Glued) subunit of dynactin, dynein, and the large nuclear mitotic apparatus NuMA protein. This leads to increased apoptosis following mitosis of adherent cells in vitro. In vivo inactivation of huntingtin by RNAi or by ablation of the Hdh gene affects spindle orientation and cell fate of cortical progenitors of the ventricular zone in mouse embryos. This function is conserved in Drosophila, the specific disruption of Drosophila huntingtin in neuroblast precursors leading to spindle misorientation. Moreover, Drosophila huntingtin restores spindle misorientation in mammalian cells. These findings reveal an unexpected role for huntingtin in dividing cells, with potential important implications in health and disease.
Molecular motors transport the axis-determining mRNAs oskar, bicoid and gurken along microtubules (MTs) in the Drosophila oocyte. However, it remains unclear how the underlying MT network is organized and how this transport takes place. We have identified a centriole-containing centrosome close to the oocyte nucleus. Remarkably, the centrosomal components, ␥-tubulin and Drosophila pericentrin-like protein also strongly accumulate at the periphery of this nucleus. MT polymerization after cold-induced disassembly in wild type and in gurken mutants suggests that in the oocyte the centrosome-nucleus complex is an active center of MT polymerization. We further report that the MT network comprises two perpendicular MT subsets that undergo dynamic rearrangements during oogenesis. This MT reorganization parallels the successive steps in localization of gurken and oskar mRNAs. We propose that in addition to a highly polarized microtubule scaffold specified by the cortex oocyte, the repositioning of the nucleus and its tightly associated centrosome could control MT reorganization and, hence, oocyte polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.