Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
The robustness and safety of liver-directed gene therapy can be substantially
improved by enhancing expression of the therapeutic transgene in the liver. To
achieve this, we developed a new approach of rational in silico vector
design. This approach relies on a genome-wide bio-informatics strategy to
identify cis-acting regulatory modules (CRMs) containing
evolutionary conserved clusters of transcription factor binding site motifs that
determine high tissue-specific gene expression. Incorporation of these
CRMs into adeno-associated viral (AAV) and non-viral vectors
enhanced gene expression in mice liver 10 to 100-fold, depending on the promoter
used. Furthermore, these CRMs resulted in robust and sustained
liver-specific expression of coagulation factor IX (FIX), validating their
immediate therapeutic and translational relevance. Subsequent translational
studies indicated that therapeutic FIX expression levels could be attained
reaching 20–35% of normal levels after AAV-based liver-directed gene
therapy in cynomolgus macaques. This study underscores the potential of rational
vector design using computational approaches to improve their robustness and
therefore allows for the use of lower and thus safer vector doses for gene
therapy, while maximizing therapeutic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.