ZnO tetrapod nanostructures have been prepared by the evaporation of Zn in air (no flow), dry and humid argon flow, and dry and humid nitrogen flow. Their properties have been investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies (at different temperatures), and electron paramagnetic resonance (EPR) spectroscopy at –160 °C and room temperature. It is found that the fabrication conditions significantly influence the EPR and PL spectra obtained. While a g = 1.96 EPR signal is present in some of the samples, green PL emission can be observed from all the samples. Therefore, the green emission in our samples does not originate from the commonly assumed transition between a singly charged oxygen vacancy and a photoexcited hole [K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, Appl. Phys. Lett. 1996, 68, 403]. However, the green emission can be suppressed by coating the nanostructures with a surfactant for all fabrication conditions, which indicates that this emission originates from surface defects.
The morphology and optical properties of ZnO nanostructures prepared by thermal evaporation of Zn under different conditions was investigated. ZnO nanostructures prepared in air, dry and humid argon flow, and dry and humid nitrogen flow were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and photoluminescence. Tetrapod nanorods were obtained for fabrication in air, while for fabrication in argon or nitrogen flow nanowires and tetrapod nanorods were obtained. Growth of nanowires from the end of the tetrapod nanorod was observed. Influence of the preparation conditions on the structure and the room-temperature photoluminescence is discussed.
Light emitting diodes (LEDs) consisting of p-GaN epitaxial films and n-ZnO nanorods have been fabricated and characterized. The rectifying behavior and emission spectra were strongly dependent on the electronic properties of both GaN film and ZnO nanorods. Light emission under both forward and reverse bias was obtained in all cases, and emission spectra could be changed by annealing the ZnO nanorods. The emission spectra could be further tuned by using a GaN LED epiwafer as a substrate. Both forward and backward diode behavior has been observed and the emission spectra were significantly affected by both the properties of the GaN substrate and the annealing conditions for the ZnO nanorods.
ZnO tetrapod nanostructures were prepared by evaporating Zn metal under humid argon flow. After the fabrication, Mn diffusion doping was performed at two different temperatures ͑600 and 800°C͒. The samples were characterized by scanning electron microscopy, transmission electron microscopy, x-ray fluorescence, x-ray diffraction ͑XRD͒, superconducting quantum interference device magnetometer, and photoluminescence. Diffusion doping resulted in the increase of the size of tetrapods, but no new peaks were found in XRD spectrum. Mn doped ZnO tetrapod structures were found to be ferromagnetic with Curie temperature ϳ50 K, and showed large coercive field ͑ϳ3500 Oe for 800°C sample, ϳ5500 Oe for 600°C sample͒.
ZnO nanorods have been grown by two inexpensive, solution-based, low-temperature methods: hydrothermal growth and electrodeposition. Heterojunction n-ZnO nanorods/p-GaN light-emitting diodes have been studied for different nanorod growth methods and different preparation of the seed layer. We demonstrate that both the nanorod properties and the device performance are strongly dependent on the growth method and seed layer. All the devices exhibit light emission under both forward and reverse bias, and the emission spectra can be tuned by ZnO nanorod deposition conditions. Electrodeposition of rods or a seed layer results in yellow emission, while conventional hydrothermal growth results in violet emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.