The third variable (V3) domain has been implicated in determining the human immunodeficiency virus (HIV) phenotype, including fusion capacity and monocytotropism. In a large set of primary H1V type 1 (HIV-1) isolates, V3 sequence analysis revealed that fast-replicating, syncytium-inducing isolates contained V3 sequences with a significantly higher positive charge than those of slow-replicating, non-syncytium-inducing monocytotropic isolates. It appeared that these differences in charge could be attributed to highly variable amino acid residues located on either side of the V3 loop, midway between the cysteine residues and the central GPG motif. In non-syncytium-inducing monocytotropic isolates, these residues were negatively charged or uncharged, whereas in syncytium-inducing nonmonocytotropic isolates, either one or both were positively charged. The substitutions at these positions result in changes in the predicted secondary structure of the V3 loop. Our data suggest that two amino acid residues in the highly variable V3 domain are responsible for phenotype differences and point to conformational differences in V3 loops from phenotypically distinct HIV-1 isolates.
Human immunodeficiency virus isolates were studied with respect to syncytium-inducing capacity, replicative properties, and host range. Five of 10 isolates from patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex were able to induce syncytia in cultures of peripheral blood mononuclear cells (MNC). In contrast, only 2 of 12 isolates from asymptomatic individuals had syncytium-inducing capacity. Syncytium-induciiig isolates were reproducibly obtained from the same MNC sample in over 90% of the cases, independent of the donor MNC used for propagation. Syncytium-inducing capacity was shown to be a stable property of an isolate, independent of viral replication rates. Evidence was obtained that the high replication rate of syncytium-inducing isolates observed during primary isolation may be due to higher infectivity of these isolates. The finding that only syncytium-inducing isolates could be transmitted to the H9 cell line is compatible with this higher infectivity. The frequent isolation of syncytium-inducing isolates from individuals with AIDS-related complex or AIDS and the apparent higher in vitro infectivity of these isolates suggest that syncytium-inducing isolates may unfavorably influence the course of human immunodeficiency virus infection.
The ability of HIV-1 to infect macrophages is thought to be essential in AIDS pathogenesis. We tested the ability of 19 primary virus isolates to infect monocyte-derived macrophages (MDM) from different donors. Two HIV-1 isolates were able to establish a productive infection in MDM from all donors tested, whereas eight completely lacked this capacity. Next to these isolates with extreme phenotypes, 50% of the primary isolates under study displayed an intermediate phenotype. These intermediate macrophage-tropic isolates established a productive infection in NDM from some but not all donors tested. PCR analysis demonstrated that the capacity to replicate in MDM could be determined at the previously described level of virus entry. However, for intermediate macrophage-tropic isolates replication was abrogated at the level of reverse transcription. Entry of highly macrophage-tropic isolates resulted in efficient completion of the reverse transcription process, whereas entry of intermediate macrophage-tropic isolates did not. Our experiments indicate that primary HIV-1 isolates may differ in their dependency on cellular factors required for reverse transcription in MDM. Differences in susceptibility of MDM for in vitro HIV-1 infection suggest variation in the availability of these cellular factors between MDM from different individuals. (J. Clin. Invest. 1994. 94:1806-1814
Previously, we and others have demonstrated a relation between the clinical course of human immunodeficiency virus type 1 (HIV-1) infection and biological properties of HIV-1 variants such as replication rate, syncytium-inducing (SI) capacity, and cytotropism. For the molecular analysis of the biological variability in these properties, we generated a panel of phenotypically distinct yet genetically highly homologous infectious molecular clones. These clones were derived from HIV-1 isolates, mostly recovered by direct clonal isolation, from a single individual in whom a transition from non-SI to SI isolates had been identified over time. Of 17 molecular clones tested, 8 were infectious. The clones exhibited differences in SI capacity and T-cell line tropism. Their phenotypes corresponded to those of their parental isolates, formally demonstrating that biological variability of HIV-1 isolates can be attributed to single molecular clones. With these clones we demonstrated that SI capacity and tropism for the H9 T-cell line, almost invariably coupled in primary HIV-1 isolates, are discernible properties. Also different requirements appeared to exist for H9 and Sup Tl cell line tropism. We obtained evidence that T-cell line tropism is not caused by differences in level of HIV-1 expression but most probably is restricted at the level of virus entry. Restriction mapping of four clones with divergent phenotypes revealed a high degree of nucleotide sequence homology (over 96.3%), indicating the usefulness of these clones for the tracking of genetic variability critical for differences in biological phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.