The charge carrier mobility in a ladder-type poly(paraphenylene) (MeLPPP) and a phenylamino-substituted poly(phenylenevinylene) (PPV) derivative (PAPPV) has been studied in detail by using the time-of-flight (TOF) method. In most cases, the TOF signals feature characteristics of nondispersive charge transport in terms of the disorder formalism, although the transition from nondispersive to the dispersive transport regime was observed in PAPPV. Hole mobilities in the range of 10−4 to 7×10−3 cm2/Vs were obtained, depending on electric field and temperature. The influence of disorder on charge transport of the investigated conjugated polymers is discussed.
Transient electroluminescence (EL) from organic bilayer light emitting diodes addressed by a rectangular voltage pulse often features an overshoot when the voltage is switched off. Experimental results are presented for a variety of hole transporting layers in contact with an oxadiazole layer simultaneously acting both as a blockade for holes and as an electron transport layer. The overshoot occurs in spin coated yet not in vapor deposited samples. A model is developed to rationalize charge recombination under the premise (i) of an interfacial layer of finite thickness between hole and electron transport layers in which both transport molecules coexist and (ii) of interfacial energy barriers impeding both hole and electron passage. It predicts the occurrence of an EL overshoot due to the recombination of stored electrons and holes under the action of their mutual space charge field when the external voltage is switched off. The temporal pattern of the predicted transient EL signal is in good agreement with experiment.
All parameters describing the charge carrier dynamics in a poly͑phenylene vinylene͒-based photorefractive ͑PR͒ composite relevant to PR grating dynamics were determined using photoconductivity studies under various illumination conditions. In particular, the values of the coefficients for trap filling and recombination of charges with ionized sensitizer molecules could be extracted independently. It is concluded that the PR growth time without preillumination is mostly determined by the competition between deep trap filling and recombination with ionized sensitizer molecules. Further, the pronounced increase in PR speed upon homogeneous preillumination ͑gating͒ as reported recently is quantitatively explained by deep trap filling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.