Using soft x-ray absorption spectroscopy and magnetic circular dichroism at the Co-L2,3 edge we reveal that the spin state transition in LaCoO3 can be well described by a low-spin ground state and a triply-degenerate high-spin first excited state. From the temperature dependence of the spectral lineshapes we find that LaCoO3 at finite temperatures is an inhomogeneous mixed-spinstate system. Crucial is that the magnetic circular dichroism signal in the paramagnetic state carries a large orbital momentum. This directly shows that the currently accepted low-/intermediate-spin picture is at variance. Parameters derived from these spectroscopies fully explain existing magnetic susceptibility, electron spin resonance and inelastic neutron data.PACS numbers: 71.28.+d, 71.70.Ch, 78.70.Dm LaCoO 3 shows a gradual non-magnetic to magnetic transition with temperature, which has been interpreted originally four decades ago as a gradual population of high spin (HS, t 4 2g e 2 g , S = 2) excited states starting from a low spin (LS, t 6 2g , S = 0) ground state [1,2,3,4,5,6,7,8]. This interpretation continued to be the starting point for experiments carried out up to roughly the first half of the 1990's [9,10,11,12]. All this changed with the theoretical work in 1996 by Korotin et al., who proposed on the basis of local density approximation + Hubbard U (LDA+U) band structure calculations, that the excited states are of the intermediate spin (IS, t 5 2g e 1 g , S = 1) type [13]. Since then many more studies have been carried out on LaCoO 3 with the majority of them [14,15,16,17,18,19,20,21,22,23,24,25,26,27] claiming to have proven the presence of this IS mechanism. In fact, this LDA+U work is so influential [28] that it forms the basis of most explanations for the fascinating properties of the recently synthesized layered cobaltate materials, which show giant magneto resistance as well as metal-insulator and ferroferri-antiferro-magnetic transitions with various forms of charge, orbital and spin ordering [29,30].In this paper we critically re-examine the spin state issue in LaCoO 3 . There has been several attempts made since 1996 in order to revive the LS-HS scenario [31,32,33,34,35], but these were overwhelmed by the above mentioned flurry of studies claiming the IS mechanism [14,15,16,17,18,19,20,21,22,23,24,25,26,27]. Moreover, a new investigation using inelastic neutron scattering (INS) has recently appeared in Phys. Rev. Lett.[36] making again the claim that the spin state transition involves the IS states. Here we used soft xray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the Co-L 2,3 edge and we revealed that the spin state transition in LaCoO 3 can be well described by a LS ground state and a triply degenerate HS excited state, and that an inhomogeneous mixed-spinstate system is formed. Parameters derived from these spectroscopies fully explain existing magnetic susceptibility and electron spin resonance (ESR) data, and provide support for an alternative interpretation of the INS [37]. C...
We present a detailed study of the valence and conduction bands of VO2 across the metal-insulator transition using bulk-sensitive photoelectron and O K x-ray absorption spectroscopies. We observe a giant transfer of spectral weight with distinct features that require an explanation which goes beyond the Peierls transition model as well as the standard single-band Hubbard model. Analysis of the symmetry and energies of the bands reveals the decisive role of the V 3d orbital degrees of freedom. Comparison to recent realistic many body calculations shows that much of the k dependence of the self-energy correction can be cast within a dimer model.
We found direct experimental evidence for an orbital switching in the V 3d states across the metal-insulator transition in VO2. We have used soft-x-ray absorption spectroscopy at the V L2,3 edges as a sensitive local probe and have determined quantitatively the orbital polarizations. These results strongly suggest that, in going from the metallic to the insulating state, the orbital occupation changes in a manner that charge fluctuations and effective bandwidths are reduced, that the system becomes more one dimensional and more susceptible to a Peierls-like transition, and that the required massive orbital switching can only be made if the system is close to a Mott insulating regime.
We have observed that CoO films grown on different substrates show dramatic differences in their magnetic properties. Using polarization dependent x-ray absorption spectroscopy at the Co L2,3 edges, we revealed that the magnitude and orientation of the magnetic moments strongly depend on the strain in the films induced by the substrate. We presented a quantitative model to explain how strain together with the spin-orbit interaction determine the 3d orbital occupation, the magnetic anisotropy, as well as the spin and orbital contributions to the magnetic moments. Control over the sign and direction of the strain may therefore open new opportunities for applications in the field of exchange bias in multilayered magnetic films.The discovery of the exchange bias phenomenon in surface-oxidized cobalt particles about 50 years ago [1] marks the beginning of a new research field in magnetism. Since then several combinations of antiferromagnetic (AFM) and ferromagnetic (FM) thin film materials have been fabricated and investigated [2,3], motivated by the potential for applications in information technology. Numerous theoretical [4,5,6,7,8] and experimental [9,10,11,12,13,14] studies have been devoted to unravel the mechanism(s) responsible for exchange biasing. However, no conclusive picture has emerged yet. A major part of the problem lies in the fact that there is insufficient information available concerning the atomic and magnetic structure of the crucial interface between the AFM and FM material. The important issue of, for instance, spin reorientations in the AFM films close to the interface is hardly considered [15,16,17,18,19], and the role of epitaxial strain herein has not been discussed at all.In this paper we study the magnetic properties of CoO thin films epitaxially grown on MnO(100) and on Ag(100), as model systems for an AFM material under either tensile or compressive in-plane stress. Our objective is to establish how the magnetic anisotropy as well as the spin and orbital contributions to the magnetic moments depend on the lowering of the local crystal field symmetry by epitaxial strain. Using polarization dependent x-ray absorption spectroscopy (XAS) at the Co L 2,3 (2p → 3d) edges, we observe that the magnitude and orientation of the magnetic moments in the CoO/MnO(100) system are very different from those in the CoO/Ag(100). We present a quantitative model to calculate how local crystal fields together with the spin-orbit interaction determine the magnetic properties. to 10 −6 mbar. The base pressure of the MBE system is in the low 10 −10 mbar range. The thickness and epitaxial quality of the films are monitored by reflection high energy electron diffraction measurements. With the lattice constant of bulk Ag (4.09Å) being smaller than that of bulk CoO (4.26Å) and MnO (4.444Å), we find from x-ray diffraction that CoO on Ag is slightly compressed in-plane (a ≈ 4.235Å, a ⊥ ≈ 4.285Å), and from reflection high energy electron diffraction (RHEED) that CoO sandwiched by MnO is about 4% expanded in-plane (a ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.