Neural tube defects (NTDs) are severe congenital malformations due to failure of neural tube formation in early pregnancy. The proof that folic acid prevents NTDs raises the question of whether other parts of homocysteine (Hcy) metabolism may affect rates of NTDs. This French case-control study covered: 77 women aged 17-42 years sampled prior to elective abortion for a severe NTDs (cases) and 61 women aged 20-43 years with a normal pregnancy. Plasma and erythrocyte folate, plasma B6, B12 and Hcy were tested as five polymorphisms MTHFR 677 C --> T, MTHFR 1298 A --> C, MTR 2756 A --> G, MTTR 66 A --> G and TCN2 776 C --> G. Cases had significantly lower erythrocyte folate, plasma folate, B12 and B6 concentrations than the controls, and higher Hcy concentration. The odds ratio was 2.15 (95% CI: 1.00-4.59) for women with the MTRR 66 A --> G allele and it was decreased for mothers carrying the MTHFR 1298 A --> C allele. In multivariate analysis, only the erythrocyte folate concentration (P = 0.005) and plasma B6 concentration (P = 0.020) were predictors. Red cell folate is the main determinant of NTDs in France. Folic acid supplement or flour fortification would prevent most cases. Increased consumption of vitamins B12 and B6 could contribute to the prevention of NTDs. Genetic polymorphisms played only a small role. Until folic acid fortification becomes mandatory, all women of reproductive age should consume folic acid in a multivitamin that also contains B12 and B6.
Preeclampsia is a placental disease characterized by hypertension and proteinuria in pregnant women, and it is associated with a high maternal and neonatal morbidity. However, circulating biomarkers that are able to predict the prognosis of preeclampsia are lacking. Thirty-eight women were included in the current study. They consisted of 19 patients with preeclampsia (13 with severe preeclampsia and 6 with non-severe preeclampsia) and 19 gestational age-matched women with normal pregnancies as controls. We measured circulating factors that are associated with the coagulation pathway (including fibrinogen, fibronectin, factor VIII, antithrombin, protein S and protein C), endothelial activation (such as soluble endoglin and CD146), and the release of total and platelet-derived microparticles. These markers enabled us to discriminate the preeclampsia condition from a normal pregnancy but were not sufficient to distinguish severe from non-severe preeclampsia. We then used a microarray to study the transcriptional signature of blood samples. Preeclampsia patients exhibited a specific transcriptional program distinct from that of the control group of women. Interestingly, we also identified a severity-related transcriptional signature. Functional annotation of the upmodulated signature in severe preeclampsia highlighted two main functions related to “ribosome” and “complement”. Finally, we identified 8 genes that were specifically upmodulated in severe preeclampsia compared with non-severe preeclampsia and the normotensive controls. Among these genes, we identified VSIG4 as a potential diagnostic marker of severe preeclampsia. The determination of this gene may improve the prognostic assessment of severe preeclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.