Two novel lumophores based on aluminum and zinc metallo-8-hydroxyquinolates have been prepared as electroluminescent materials, and their absorbance, photoluminescence, and electroluminescence properties compared with unsubstituted versions of these same complexes. 8-Hydroxy-5-piperidinylquinolinesulfonamide (1) was synthesized in order to add an electron-withdrawing substituent at the 5-position in 8-hydroxyquinoline, increasing the solubility of the corresponding metal quinolate complexes in nonpolar solvents, and producing a blue-shift in the emission wavelength maximum, relative to complexes formed from the unsubstituted compound. The aluminum complex (Al(QS)3) and the zinc complex (Zn(QS)2) of 1 were compared with the aluminum and zinc complexes of unsubstituted 8-hydroxyquinoline (AlQ3 and ZnQ2), both as solutions and as pure thin films, or as poly(N-vinylcarbazole) (PVK) thin films doped with the metal quinolates. Ultraviolet photoelectron spectroscopy data are presented to assist in estimating the energies of the highest occupied molecular orbitals (HOMO) of AlQ3, ZnQ2, Al(QS)3, and Zn(QS)2. Electroluminescence data shows that ITO/Al(QS)3−PVK/aluminum and ITO/Zn(QS)2−PVK/aluminum devices exhibit good diode-like electrical behavior. Electroluminescence spectra mimic the photoluminescence spectra for all complexes.
Solution electrochemical studies have been conducted of the principle lumophores, dopants, and hole-transport agents of aluminum-quinolate(Alq3)-based organic light-emitting diodes (OLEDs) along with the characterization of their electrogenerated chemiluminescence (ECL). In acetonitrile/benzene solvent mixtures, Alq3 shows single one-electron reduction and oxidation processes, with a separation between the first oxidation and first reduction potentials, ΔE electrochemical = 3.03 V, close to the estimates of energy difference between HOMO and LUMO levels obtained from absorbance spectra of thin films of Alq3, ΔE optical = 3.17 eV. A new sulfonamide derivative of Alq3, (Al(qs)3), showed a positive shift (ca. 0.32 V) in the first reduction potential versus the parent molecule, and resolution of the overall reduction process into three successive, chemically reversible, one-electron reductions. Two successive one-electron oxidations are seen for 4,4‘-bis(m-tolyphenylamino)biphenyl (TPD), a hole-transporting material in many bilayer OLEDs, and for TPDF2, a fluorinated version of TPD, with TPDF2 oxidation occurring 0.1 V positive of that for TPD. Electrogenerated chemiluminescence reactions (Alq3 -•/TPD+• (or TPDF2 +•) and Al(qs)3 -•/TPD+• (or TPDF2 +•)) were found to produce emission spectra from Alq3*s or Al(qs)3*s states which were nearly identical to those seen from OLEDs based upon these molecules. Emission intensities increased with the increasing potential difference between the relevant redox couples. The diisoamyl derivative of quinacridone (DIQA), a quinacridone dopant for certain Alq3-based OLEDs, undergoes two successive one-electron reductions and two successive one-electron oxidations. The ECL reactions DIQA-•/DIQA+•, DIQA+•/Alq3 -•, DIQA+•/Al(qs)3 -•, DIQA-•/TPD+• and DIQA-•/TPDF2 +• all produce the same singlet emissive state, DIQA*s, and the same emission spectral response seen in quinacridone and DIQA-doped OLEDs.
The thermodynamics of polymerization of epsilon-caprolactone and 1,4-dioxan-2-one has been investigated theoretically and compared with that recently reported for delta-valerolactone and gamma-butyrolactone. Specifically, the ability of these monomers to polymerize has been related to the strain of the rings, the Gibbs free energy of simple models for ring-opening reactions of the cyclic lactones, and the conformational preferences of linear model compounds of the corresponding homopolyesters. The results are fully consistent with the lack of polymerizability of gamma-butyrolactone, while the ring openings of epsilon-caprolactone and delta-valerolactone have been found to be exergonic processes. Polymerizability of 1,4-dioxan-2-one has been found to be favored, even though less than that of epsilon-caprolactone and delta-valerolactone. Two factors explain these features: (i) the strain of the ester group in the lactones increases with the exergonic character of the ring-opening process, and (ii) the stability of coiled conformations in model compounds follows this order: poly-4-hydroxybutyrate > poly(1,4-dioxan-2-one) > poly-6-hydroxycaproate approximately poly-5-hydroxyvalerate. Finally, the influence of the environment on the polymerizability of the three cyclic lactones is discussed in detail.
Solution electrogenerated chemiluminescence (ECL) was evaluated for molecules of interest for organic light-emitting diodes (OLEDs), using high-frequency voltage pulses at a microelectrode. Radical cations of different energies were electrogenerated from a series of triarylamine hole-transport materials (x-TPD), in the presence of radical anions of a high electron affinity sulfonamide derivative of tris(8-hydroxyquinoline)aluminum (Al(qs) 3 ), or a bis(isoamyl) derivative of quinacridone (DIQA). The resultant emission was from the excited singlet states 1 Al(qs) 3 * or 1 DIQA*, the same excited state produced in OLEDs based on these molecules. In solution, the majority of the reaction pairs had insufficient energy to populate 1 Al(qs) 3 * or 1 DIQA* directly, but could form the triplet states 3 Al(qs) 3 * or 3 DIQA*. The reaction order and the temporal response of the emission were consistent with subsequent formation of the excited singlet states via triplet-triplet annihilation (TTA). For reactions with a low excess Gibbs free energy to form the triplet state (∆ T G), the efficiency increased exponentially with an increase in driving force (increase in oxidation potential of x-TPD), then reached a plateau. At the maximum, the efficiencies for formation of 1 Al(qs) 3 * or 1 DIQA* via the TTA route reach as high as a few percent. The computed energetics of these reactions suggest that similar lightproducing electroluminescent reactions, proceeding via triplet formation, could also occur in condensed phase organic thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.