Mesenchymal stem cells (MSCs) are found in a variety of tissues, including human bone marrow; secrete hematopoietic cytokines; support hematopoietic progenitors in vitro; and possess potent immunosuppressive properties. We hypothesized that cotransplantation of culture-expanded MSCs and hematopoietic stem cells (HSCs) from HLA-identical sibling donors after myeloablative therapy could facilitate engraftment and lessen graft-versus-host disease (GVHD); however, the safety and feasibility of this approach needed to be established. In an open-label, multicenter trial, we coadministered culture-expanded MSCs with HLA-identical sibling-matched HSCs in hematologic malignancy patients. Patients received either bone marrow or peripheral blood stem cells as the HSC source. Patients received 1 of 4 study-specified transplant conditioning regimens and methotrexate (days 1, 3, and 6) and cyclosporine as GVHD prophylaxis. On day 0, patients were given culture-expanded MSCs intravenously (1.0-5.0 x 10(6)/kg) 4 hours before infusion of either bone marrow or peripheral blood stem cells. Forty-six patients (median age, 44.5 years; range, 19-61 years) received MSCs and HLA-matched sibling allografts. MSC infusions were well tolerated, without any infusion-related adverse events. The median times to neutrophil (absolute neutrophil count > or = 0.500 x 10(9)/L) and platelet (platelet count > or = 20 x 10(9)/L) engraftment were 14.0 days (range, 11.0-26.0 days) and 20 days (range, 15.0-36.0 days), respectively. Grade II to IV acute GVHD was observed in 13 (28%) of 46 patients. Chronic GVHD was observed in 22 (61%) of 36 patients who survived at least 90 days; it was extensive in 8 patients. Eleven patients (24%) experienced relapse at a median time to progression of 213.5 days (range, 14-688 days). The probability of patients attaining disease- or progression-free survival at 2 years after MSC infusion was 53%. Cotransplantation of HLA-identical sibling culture-expanded MSCs with an HLA-identical sibling HSC transplant is feasible and seems to be safe, without immediate infusional or late MSC-associated toxicities. The optimal MSC dose and frequency of administration to prevent or treat GVHD during allogeneic HSC transplantation should be evaluated further in phase II clinical trials.
Haploidentical transplantation performed using T-cell-replete grafts and post-transplantation cyclophosphamide achieves outcomes equivalent to those of contemporaneous transplantation performed using MRDs and MUDs. Such transplantation represents a valid alternative for patients who lack a conventional donor.
Purpose The Programmed Death-1 (PD-1) immune checkpoint pathway may be usurped by tumors, including diffuse large B-cell lymphoma (DLBCL), to evade immune surveillance. The reconstituting immune landscape after autologous hematopoietic stem-cell transplantation (AHSCT) may be particularly favorable for breaking immune tolerance through PD-1 blockade. Patients and Methods We conducted an international phase II study of pidilizumab, an anti–PD-1 monoclonal antibody, in patients with DLBCL undergoing AHSCT, with correlative studies of lymphocyte subsets. Patients received three doses of pidilizumab beginning 1 to 3 months after AHSCT. Results Sixty-six eligible patients were treated. Toxicity was mild. At 16 months after the first treatment, progression-free survival (PFS) was 0.72 (90% CI, 0.60 to 0.82), meeting the primary end point. Among the 24 high-risk patients who remained positive on positron emission tomography after salvage chemotherapy, the 16-month PFS was 0.70 (90% CI, 0.51 to 0.82). Among the 35 patients with measurable disease after AHSCT, the overall response rate after pidilizumab treatment was 51%. Treatment was associated with increases in circulating lymphocyte subsets including PD-L1E–bearing lymphocytes, suggesting an on-target in vivo effect of pidilizumab. Conclusion This is the first demonstration of clinical activity of PD-1 blockade in DLBCL. Given these results, PD-1 blockade after AHSCT using pidilizumab may represent a promising therapeutic strategy in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.