Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1at and 19.7at 8 . A clear signal is observed in the diphoton channel at a mass close to 125 with a local significance of , where a significance of is expected for the standard model Higgs boson. The mass is measured to be , and the best-fit signal strength relative to the standard model prediction is . Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.
The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at √ s NN = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range p T = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 7 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher p T , this suppression is significantly reduced, approaching roughly a factor of 2 for particles with p T in the range p T = 40-100 GeV/c.
Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and , , and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 . The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 , and sleptons up to 260 , depending on the model details.
Measurements of inclusive W and Z boson production cross sections in pp collisions at √ s = 7 TeV are presented, based on 2.9 pb −1 of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give σ(pp → WX) × B(W → ν) = 9.95 ± 0.07 (stat.) ± 0.28 (syst.) ± 1.09 (lumi.) nb and σ(pp → ZX) × B(Z → + −) = 0.931 ± 0.026 (stat.) ± 0.023 (syst.) ± 0.102 (lumi.) nb, where stands for either e or µ. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported.
A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 inverse-femtobarns at a centre-of-mass energy of 7 TeV, and 19.7 inverse-femtobarns at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance larger than 3 standard deviations for mH values between 115 and 130 GeV. The best fit of the observed H→τ−τ signal cross section for mH = 125 GeV is 0.78 +/- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.