LETTER • OPEN ACCESSFirst patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, highfield MRI guided radiotherapy treatment AbstractThe integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac.Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while Letter Institute of Physics and Engineering in MedicineOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 3 Author to whom any correspondence should be addressed. the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm.In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.
As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1 × 1 and 57 × 22 cm. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of [Formula: see text] cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of +0.24 cm. For a 10 × 10 cm beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%-80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm) = 57%. The entrance surface dose is ∼36% of [Formula: see text]. Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017 (Raaymakers et al 2017 Phys. Med. Biol. 62 L41-50).
Background and purpose: Daily online adaptation of the clinical target volume (CTV) using MR-guided radiotherapy enables margin reduction of the planning target volume (PTV). This study describes the implementation and initial experience of MR-guided radiotherapy on the 1.5T MR-linac and evaluates treatment time, patient compliance, and target coverage, including an initial assessment of margin reduction. Materials and methods: Patients were treated on a 1.5T MR-linac (7MV, FFF). At each fraction a 3D T2 weighted (T2w) MR-sequence was acquired on which the CTV was adapted after a deformable registration of the contours from the pre-planning CT scan. Based on the new contours a full online replanning was done after which a new 3D T2w MR-sequence was acquired for position verification. A 5 field Intensity Modulated Radiotherapy (IMRT) plan was delivered. Results: Forty-three patients with rectal cancer were treated with 25 Gy in 5 fractions of which 18 with reduced margins. In total, 204 of 215 fractions were delivered on the MR-linac all of which obtained a clinically acceptable treatment plan. Median in-room time per fraction was 48 min (interquartile range 8). No fractions were canceled or interrupted because of patient intolerance. CTV coverage after margin reduction was good on all post-treatment scans but one due to passing gas. Conclusion: MR-guided radiotherapy using daily full online recontouring and replanning on a 1.5T MRlinac for rectal cancer is feasible and currently takes about 48 min per fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.