This pooled analysis of the EORTC-RBG datasets confirmed the strong and independent prognostic value of uPA and PAI-1 in primary breast cancer. For patients with lymph node-negative breast cancer, uPA and PAI-1 measurements in primary tumors may be especially useful for designing individualized treatment strategies.
As a result of chromosome translocations, the EWS gene is fused to a variety of transcription factors in human solid neoplasia. In Ewing tumors EWS can be fused to four dierent members of the ETS family, namely FLI-1, ERG, ETV1 and E1AF. We have identi®ed a new member of the ETS family, called FEV, which is fused to EWS in a subset of Ewing tumors. FEV encodes a 238 amino acid protein which contains an ETS DNA binding domain closely related to that of FLI-1 and ERG. However, the N-terminal portion of FEV is only 42 amino acids long which suggests that FEV is lacking important transcription regulatory domains contained in FLI-1 and ERG N-terminal parts. The C-terminal end of FEV is rich in alanine residues which may indicate that FEV is a transcription repressor. The FEV gene is encoded by three exons and is located on chromosome 2. FEV expression was only detected in adult prostate and small intestine but not in other adult nor in fetal tissues, thus indicating that FEV has a restricted expression pattern. Following a scheme similar to previously described translocations in Ewing tumors, a t(2;22) chromosome translocation fuses the N-terminal domain of EWS to the ETS DNA binding domain of FEV.
Summary Apoptosis can be triggered by cytotoxic agents and radiation currently used in cancer treatment. However, the apoptotic response appears to vary between cell types (normal or transformed) and between types of malignancy. Thus, irradiation induces apoptosis in normal human lymphocytes but not in lymphocytes derived from a subset of chronic lymphocytic leukaemia (CLL). Moreover, in this subset, spontaneous apoptosis is inhibited by irradiation. Why irradiation does not allow the initiation of the apoptotic death pathway could be explained, at least in part, and in agreement with recent findings on experimental models, by the activation of the transcriptional factor NF-KB, which is able to inhibit apoptotic cell response. Low doses (at which no effect is observed with normal human lymphocytes) of the highly specific proteasome inhibitor lactacystin are sufficient to trigger apoptosis in these malignant cells. Proteasome inhibition by lactacystin prevents the nuclear translocation of both p50 and p65 NF-KB subunits and sensitizes these cells to apoptosis by tumour necrosis factor (TNF)-a treatment. As this subset of CLL is totally resistant to any treatment, proteasome inhibition by lactacystin provides a new therapeutic approach to be explored, considering the sensitivity of malignant CLL-derived lymphocytes to be quite different from that of normal human lymphocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.