The valence-band discontinuities at various wurtzite GaN, AlN, and InN heterojunctions were measured by means of x-ray photoemission spectroscopy. A significant forward–backward asymmetry was observed in the InN/GaN–GaN/InN and InN/AlN–AlN/InN heterojunctions. The asymmetry was understood as a piezoelectric strain effect. We report the valence band discontinuities for InN/GaN=1.05±0.25 eV, GaN/AlN=0.70±0.24 eV, and InN/AlN=1.81±0.20 eV, all in the standard type I lineup. These values obey transitivity to within the experimental accuracy. Tables of photoemission core level binding energies are reported for wurtzite GaN, AlN, and InN.
A new metallization scheme has been developed for obtaining very low Ohmic contact to n-GaN. The metallization technique involves the deposition of a composite metal layer Ti/Al/Ni/Au (150 Å/2200 Å/400 Å/500 Å) on n-GaN preceded by a reactive ion etching (RIE) process which most likely renders the surface highly n type. Of the several attempts and with annealing at 900 °C for 30 s, contacts with specific resistivity values of ρs=8.9×10−8 Ω cm2 or lower for a doping level of 4×1017 cm−3 were obtained. The physical mechanism underlying the realization of such a low resistivity is elucidated.
Transmission electron microscopy has been applied to characterize the structure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts on n-type GaN (∼1017 cm−3) epitaxial layers. The metals were deposited either by conventional electron-beam or thermal evaporation techniques, and then thermally annealed at 900 °C for 30 s in a N2 atmosphere. Before metal deposition, the GaN surface was treated by reactive ion etching. A thin polycrystalline cubic TiN layer epitaxially matched to the (0001) GaN surface was detected at the interface with the GaN substrate. This layer was studied in detail by electron diffraction and high resolution electron microscopy. The orientation relationship between the cubic TiN and the GaN was found to be: {111}TiN//{00.1}GaN, [110]TiN//[11.0]GaN, [112]TiN//[10.0]GaN. The formation of this cubic TiN layer results in an excess of N vacancies in the GaN close to the interface which is considered to be the reason for the low resistance of the contact.
Compared with conventional display technologies, liquid crystal display (LCD), and organic light emitting diode (OLED), micro-LED displays possess potential advantages such as high contrast, fast response, and relatively wide color gamut, low power consumption, and long lifetime. Therefore, micro-LED displays are deemed as a promising technology that could replace LCD and OLED at least in some applications. While the prospects are bright, there are still some technological challenges that have not yet been fully resolved in order to realize the high volume commercialization, which include efficient and reliable assembly of individual LED dies into addressable arrays, full-color schemes, defect and yield management, repair technology and cost control. In this article, we review the recent technological developments of micro-LEDs from various aspects.
Time-resolved photoluminescence has been employed to study the mechanisms of band-edge emissions in Mg-doped p-type GaN. Two emission lines at about 290 and 550 meV below the band gap (Eg) have been observed. Their recombination lifetimes, dependencies on excitation intensity, and decay kinetics have demonstrated that the line at 290 meV below Eg is due to the conduction band-to-impurity transition involving shallow Mg impurities, while the line at 550 meV below Eg is due to the conduction band-to-impurity transition involving doping related deep-level centers (or complexes).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.