We have identified a clonal complex of Mycobacterium bovis present at high frequency in cattle in population samples from several sub-Saharan west-central African countries. This closely related group of bacteria is defined by a specific chromosomal deletion (RDAf1) and can be identified by the absence of spacer 30 in the standard spoligotype typing scheme. We have named this group of strains the African 1 (Af1) clonal complex and have defined the spoligotype signature of this clonal complex as being the same as the M. bovis BCG vaccine strain but with the deletion of spacer 30. Strains of the Af1 clonal complex were found at high frequency in population samples of M. bovis from cattle in Mali, Cameroon, Nigeria, and Chad, and using a combination of variable-number tandem repeat typing and spoligotyping, we show that the population of M. bovis in each of these countries is distinct, suggesting that the recent mixing of strains between countries is not common in this area of Africa. Strains with the Af1-specific deletion (RDAf1) were not identified in M. bovis isolates from Algeria, Burundi, Ethiopia, Madagascar, Mozambique, South Africa, Tanzania, and Uganda. Furthermore, the spoligotype signature of the Af1 clonal complex has not been identified in population samples of bovine tuberculosis from Europe, Iran, and South America. These observations suggest that the Af1 clonal complex is geographically localized, albeit to several African countries, and we suggest that the dominance of the clonal complex in this region is the result of an original introduction into cows naïve to bovine tuberculosis.
The majority of healthy individuals exposed to Mycobacterium tuberculosis will not develop tuberculosis (TB), though many may become latently infected. More precise measurement of the human immune response to M. tuberculosis infection may help us understand this difference and potentially identify those subjects most at risk of developing active disease. Gamma interferon (IFN-␥) production has been widely used as a proxy marker to study infection and to examine the human immune response to specific M. tuberculosis antigens. It has been suggested that genetically distinct M. tuberculosis strains may invoke different immune responses, although how these differences influence the immune responses and clinical outcome in human tuberculosis is still poorly understood. We therefore evaluated the antigen-specific IFN-␥ production responses in peripheral blood mononuclear cells from two cohorts of subjects recruited in Antananarivo Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a major cause of global morbidity and mortality throughout the world. It is estimated that there are in excess of new 8 million cases of TB each year, and this represents just the tip of the iceberg. Infection with M. tuberculosis leads to clinically active TB in about 5 to 10% of exposed individuals. A much higher proportion of exposed individuals apparently become latently infected, and these individuals may remain noninfectious and symptom free for years. Approximately one-third of the world population is thought to be latently infected with M. tuberculosis. However, under some circumstances (in about 5% of the latently infected people), the host immune response is perturbed and latent M. tuberculosis infection may develop into clinically active TB (52). This process is most prominent in individuals coinfected with human immunodeficiency virus (HIV), but it can also occur with impairment of the immune system associated with old age, malnutrition, anti-inflammatory drug treatment, etc. Reactivation of latent disease is thought to contribute roughly half of all TB cases, and thus, understanding the factors controlling the development of acute primary TB or latent infection is crucial to TB control (64).Gamma interferon (IFN-␥) production has been widely used to study infection and to examine the human immune response to specific M. tuberculosis antigens. The 6-kDa early secreted antigenic target (ESAT-6) antigen, encoded by genes located within region of difference 1 (RD1) of the M. tuberculosis genome, is much more specific for M. tuberculosis than purified protein derivative (PPD), as these genes were deleted from M. bovis in the development of BCG substrains or are not found in most environmental mycobacteria (29,53). Some studies showed that the level of IFN-␥ release in response to ESAT-6 could identify TB contacts at risk of developing active disease after recent infection (3,18,30). CFP7 or TB10.4 is an immunodominant antigen recognized by TB patients and M. bovis BCG-vaccinated subjects, while ESAT-6 is specific to TB pa-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.