Background: The IFCC Reference Measurement System for hemoglobin (Hb)A1c (IFCC-RM) has been developed within the framework of metrologic traceability and is embedded in a network of 14 reference laboratories. This paper describes the outcome of 12 intercomparison studies (periodic evaluations to control essential elements of the IFCC-RM). Methods: Each study included: unknown samples (to test individual network laboratories); known samples (controls); recently manufactured calibrators (to check calculated assigned value); stored calibrators (to test stability) and a calibration-set (to calibrate the IFCC-RM). The unknown samples are measured by use of the IFCC-RM and the designated comparison methods [DCMs; the National Glycohemoglobin Standardization Program (NGSP) in the US, Japanese Diabetes Society/Japanese Society for Clinical Chemistry (JDS/JSCC) in Japan, and Mono-S in Sweden] are used to investigate the stability of the Master Equation (ME), the relationship between IFCC-RM and DCMs. Results: A total of 105 IFCC-RM data sets were evaluated: 95 were approved, 5 were not, and for 5 no data were submitted. Trend analysis of the MEs, expressed as change in percentage HbA1c per year, revealed 0.000% (NGSP, not significant), −0.030%, (JDS/JSCC; significant) and −0.016% (Mono-S; not significant). Evaluation of long-term performance revealed no systematic change over time; 2 laboratories showed significant bias, 1 poor reproducibility. The mean HbA1c determined by laboratories performing mass spectrometry (MS) was the same as the mean determined by laboratories using capillary electrophoresis (CE), but the reproducibility at laboratories using CE was better. One batch of new calibrators was not approved. All stored calibrators were stable. Conclusion: A sound reference system is in place to ensure continuity and stability of the analytical anchor for HbA1c.
A proteolytic enzyme was purified from the post-myofibrillar fraction of rat skeletal muscle. The purification procedure consisted of fractionation of the muscle extract by (NH4)2SO4, chromatography on DEAE-Sephacel, fast protein liquid chromatography on Mono Q and gel filtration on Sepharose 6B. The enzyme preparation appeared to be homogeneous as judged by disc electrophoresis in polyacrylamide gels and by immunoelectrophoresis. The isoelectric point of the proteinase is at 5.1-5.2. The enzyme has an Mr of about 650 000 and dissociates into eight subunits of Mr 25 000-32 000 when subjected to electrophoresis in sodium dodecyl sulphate/polyacrylamide gels. The proteinase contains hydrolytic activity against N-blocked tripeptide 4-methyl-7-coumarylamide substrates with an arginine or phenylalanine residue adjacent to the leaving group. Maximum activity with the first group of substrates was at pH 10.5, and this activity was inhibited by leupeptin, chymostatin and Ca2+. Maximum activity with the latter group of substrates was at pH 7.5, and was also inhibited by the two microbial inhibitors, but was activated by Ca2+ ions. By using [14C]methylcasein as a substrate, maximum activity was observed at pH9.0, and this proteolytic activity was not affected by leupeptin, was enhanced by chymostatin and inhibited by Ca2+. Similar effects were observed when benzyloxycarbonyl-Leu-Leu-Glu 2-naphthylamide was used as a substrate. These enzymic activities were abolished by p-hydroxymercuribenzenesulphonic acid or mersalyl acid, whereas a small activation was observed with cysteine or dithiothreitol.
A multicatalytic proteinase from rat skeletal muscle contains active site(s) catalysing the degradation of benzoyl-Val-Gly-Arg 4-methyl-7-coumarylamide, succinyl-Ala-Ala-Phe 4-methylcoumarylamide and [14C]methylcasein as well as benzyloxy-carbonyl-Leu-Leu-Glu 2-naphthylamide. These activities are 7-14-fold activated by 1 mM-sodium dodecyl sulphate. The activation leads to a higher susceptibility to the proteinase inhibitor chymostatin and to a lower ability to be inhibited and precipitated by antibodies raised against the non-activated enzyme. Since no changes in Mr or subunit composition were observed in the SDS-activated form, some conformational changes seem to occur during the activation step. More pronounced activation was observed in the presence of physiological concentrations of fatty acids; oleic acid at 100 microM concentrations stimulated the proteinase about 50-fold. In contrast with the non-activated proteinase, the activated enzyme considerably degrades muscle cytoplasmic proteins in vitro. Thus it is not unlikely that, in vivo, potential activators such as fatty acids can induce the multicatalytic proteinase to participate in muscle protein breakdown.
The measurement of glycated hemoglobin is central in the monitoring of glycemic control in patients with diabetes. There are at least 30 different laboratory assays commercially available to measure the proportion of HbA1c in blood. In 1995 the IFCC established a Working Group (IFCC WG-HbA1c) to achieve international standardization of HbA1c measurement. The main achievements can be summarized as follows: a) a reference measurement procedure has been established with purified primary calibrators; b) a network of reference laboratories has been developed worldwide; and c) work has begun on implementation of traceability to the IFCC reference system. The IFCC WG-HbA1c recognizes the recommendation of the IFCC-IUPAC Committee on Nomenclature, Properties and Units that the analyte measured by the IFCC reference measurement procedure has been defined as betaN1-deoxyfructosyl-hemoglobin and that the recommended measurement units are mmol/mol. The IFCC WG-HbA1c recommends maintaining the use of the name HbA1c in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.