Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees (r2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species (r2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r2 = .46, p < .001), as did forest density (r2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude (r2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
Most ecological hypotheses about species coexistence hinge on species differences, but quantifying trait differences across species in diverse communities is often unfeasible. We examined the variation of demographic traits using a global tropical forest data set covering 4500 species in 10 large-scale tree inventories. With a hierarchical Bayesian approach, we quantified the distribution of mortality and growth rates of all tree species at each site. This allowed us to test the prediction that demographic differences facilitate species richness, as suggested by the theory that a tradeoff between high growth and high survival allows species to coexist. Contrary to the prediction, the most diverse forests had the least demographic variation. Although demographic differences may foster coexistence, they do not explain any of the 16-fold variation in tree species richness observed across the tropics. C omparative studies of tree demography typically consider the entire community as a unit, ignoring species differences (1), simply because most tree inventories include small samples of many species (2, 3). Comparative studies show that tropical forests typically have higher turnover than do temperate forests (4) and that higher tree turnover associates with higher tree diversity (5). These studies cannot, however, test ecological hypotheses about diversity, coexistence, and demography (6-10).A tradeoff between rapid growth and long life span permits species coexistence and can foster diversity: Species reproducing early in life persist despite poor competitive ability by growing rapidly on disturbed sites where resources are abundant. Long-lived species coexist by outliving the weedy invaders, persisting where resources are scarce. This is a familiar and widely known tradeoff in plant and animal communities (9-11) called the successionalniche hypothesis (7,12). At a deterministic equilibrium, an indefinite number of species can coexist by this mechanism, each differing from all others along a continuum from short life span (with high growth) to long life span (and low growth). With stochastic demography, however, there is limiting similarity and the equilibrium species richness is finite (11, 13). This hypothesis is widely quoted as an explanation for tropical forest diversity (14-16). Here, we ask whether species differences along a demographic axis explain why some tropical forests have many more species than others.If demographic niches are a key force controlling forest diversity, then more diverse forests have more demographic niches. More niches could come about either by spreading demographic rates over a wider range or packing more in the same range. Here, we focus on the first prediction: Tropical forests gain diversity by having a wider range of demographic niches, as reflected by the range of mortality and growth rates across species.We provide a direct test by quantifying mortality and growth of 4500 tree species in 10 different forests in America, Asia, and Africa (17). The 10 sites form a large-scale ob...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.