In the present work, we report the effects of C(60)-pretreatments on acute carbon tetrachloride intoxication in rats, a classical model for studying free-radical-mediated liver injury. Our results show that aqueous C(60) suspensions prepared without using any polar organic solvent not only have no acute or subacute toxicity in rodents but they also protect their livers in a dose-dependent manner against free-radical damage. To be sure, according to histopathological examinations and biological tests, pristine C(60) can be considered as a powerful liver-protective agent.
Carbon nanotube (CNT) materials are of special interest as potential tools for biomedical applications. However, available toxicological data concerning single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) remain contradictory. Here, we compared the effects of SWNTs as a function of dose, length, and surface chemistry in Swiss mice. Transmission electron microscopy (TEM), Raman, near-infrared (NIR), and X-ray photoelectron spectroscopies have been used to characterize the tested materials. The dose of SWNT materials used in this study is considerably higher than that proposed for most biomedical applications, but it was deemed necessary to administer such large doses to accurately assess the toxicological impact of the materials. In an acute toxicity test, SWNTs were administered orally at a dose level of 1000 mg/kg bodyweight (b.w.). Neither death nor growth or behavioral troubles were observed. After intraperitoneal administration, SWNTs, irrespective of their length or dose (50-1000 mg/kg b.w.), can coalesce inside the body to form fiberlike structures. When structure lengths exceeded 10 mum, they irremediably induced granuloma formation. Smaller aggregates did not induce granuloma formation, but they persisted inside cells for up to 5 months after administration. Short (<300 nm) well-individualized SWNTs can escape the reticuloendothelial system to be excreted through the kidneys and bile ducts. These findings suggest that if the potential of SWNTs for medical applications is to be realized, they should be engineered into discrete, individual "molecule-like" species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.