We present a new measurement of the positive muon magnetic anomaly, a µ ≡ (gµ − 2)/2, from the Fermilab Muon g −2 Experiment based on data collected in 2019 and 2020. We have analyzed more than four times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of two due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω′ p , and of the anomalous precession frequency corrected for beam dynamics effects, ωa. From the ratio ωa/ω ′ p , together with precisely determined external parameters, we determine a µ = 116 592 057(25) × 10 −11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a µ (FNAL) = 116 592 055(24) × 10 −11 (0.20 ppm). The new experimental world average is aµ(Exp) = 116 592 059(22) × 10 −11 (0.19 ppm), which represents a factor of two improvement in precision.
We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg 2 patch of sky centered on RA 0 h, Dec. −57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 μK deg in Q and U at 143 GHz). We detect 150 × 353 cross-correlation in B modes at high significance. We fit the single-and cross-frequency power spectra at frequencies ≥ 150 GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r 0.05 < 0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance.
We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto-and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95 × 150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23 × 95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23 × 353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r 0.05 < 0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r 0.05 < 0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves. DOI: 10.1103/PhysRevLett.116.031302 PRL 116, 031302 (2016) P H Y S I C A L R E V I E W L E T T E R S week ending 22 JANUARY 20160031-9007=16=116(3)=031302 (9) 031302-1 © 2016 American Physical SocietyIntroduction.-Measurements of the cosmic microwave background (CMB) [1] are one of the observational pillars of the standard cosmological model (ΛCDM) and constrain its parameters to high precision (see most recently Ref. [2]). This model extrapolates the Universe back to very high temperatures (≫10 12 K) and early times (≪ 1 s). Observations indicate that conditions at these early times are described by an almost uniform plasma with a nearly scale invariant spectrum of adiabatic density perturbations. However, ΛCDM itself offers no explanation for how these conditions occurred. The theory of inflation is an extension to the standard model, which postulates a phase of exponential expansion at a still earlier epoch (∼10 −35 s) that precedes ΛCDM and produces the required initial conditions (see Ref.[3] for a recent review and citations to the original literature).There is widespread support for the claim that existing observations already indicate that some version of inflation probably did occur, but there are also skeptics [4,5]. As well as the specific form of the initial density perturbations, there is an additional relic which inflation predicts, and which one can attempt to detect....
We present results from an analysis of all data taken by the BICEP2/Keck CMB polarization experiments up to and including the 2015 observing season. This includes the first Keck Array observations at 220 GHz and additional observations at 95 & 150 GHz. The Q/U maps reach depths of 5.2, 2.9 and 26 µKcmb arcmin at 95, 150 and 220 GHz respectively over an effective area of ≈ 400 square degrees. The 220 GHz maps achieve a signal-to-noise on polarized dust emission approximately equal to that of Planck at 353 GHz. We take auto-and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz. We evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and we impose priors on some of these using external information from Planck and WMAP derived from larger regions of sky. The model is shown to be an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint r0.05 < 0.07 at 95% confidence, which tightens to r0.05 < 0.06 in conjunction with Planck temperature measurements and other data. The lensing signal is detected at 8.8σ significance. Running maximum likelihood search on simulations we obtain unbiased results and find that σ(r) = 0.020. These are the strongest constraints to date on primordial gravitational waves.
We describe the design of a new polarization sensitive receiver, spt-3g, for the 10-meter South Pole Telescope (spt). The spt-3g receiver will deliver a factor of ∼20 improvement in mapping speed over the current receiver, spt-pol. The sensitivity of the spt-3g receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (∼0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through spt-3g data alone or in combination with bicep2/keck, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the spt-3g survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (des), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ∼200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.