The complement system plays a paradoxical role in the development and expression of autoimmunity in humans. The activation of complement in systemic lupus erythematosus (SLE) contributes to tissue injury. In contrast, inherited deficiency of classical pathway components, particularly C1q (ref. 1), is powerfully associated with the development of SLE. This leads to the hypothesis that a physiological action of the early part of the classical pathway protects against the development of SLE (ref. 2) and implies that C1q may play a key role in this respect. C1q-deficient (C1qa-/-) mice were generated by gene targeting and monitored for eight months. C1qa-/- mice had increased mortality and higher titres of autoantibodies, compared with strain-matched controls. Of the C1qa-/- mice, 25% had glomerulonephritis with immune deposits and multiple apoptotic cell bodies. Among mice without glomerulonephritis, there were significantly greater numbers of glomerular apoptotic bodies in C1q-deficient mice compared with controls. The phenotype associated with C1q deficiency was modified by background genes. These findings are compatible with the hypothesis that C1q deficiency causes autoimmunity by impairment of the clearance of apoptotic cells.
SummaryThe functions of Nr4a1-dependent Ly6Clow monocytes remain enigmatic. We show that they are enriched within capillaries and scavenge microparticles from their lumenal side in a steady state. In the kidney cortex, perturbation of homeostasis by a TLR7-dependent nucleic acid “danger” signal, which may signify viral infection or local cell death, triggers Gαi-dependent intravascular retention of Ly6Clow monocytes by the endothelium. Then, monocytes recruit neutrophils in a TLR7-dependent manner to mediate focal necrosis of endothelial cells, whereas the monocytes remove cellular debris. Prevention of Ly6Clow monocyte development, crawling, or retention in Nr4a1−/−, Itgal−/−, and Tlr7host−/−BM+/+ and Cx3cr1−/− mice, respectively, abolished neutrophil recruitment and endothelial killing. Prevention of neutrophil recruitment in Tlr7host+/+BM−/− mice or by neutrophil depletion also abolished endothelial cell necrosis. Therefore, Ly6Clow monocytes are intravascular housekeepers that orchestrate the necrosis by neutrophils of endothelial cells that signal a local threat sensed via TLR7 followed by the in situ phagocytosis of cellular debris.
C3 glomerulopathy is a recently introduced pathological entity whose original definition was glomerular pathology characterized by C3 accumulation with absent or scanty immunoglobulin deposition. In August 2012, an invited group of experts (comprising the authors of this document) in renal pathology, nephrology, complement biology, and complement therapeutics met to discuss C3 glomerulopathy in the first C3 Glomerulopathy Meeting. The objectives were to reach a consensus on: the definition of C3 glomerulopathy, appropriate complement investigations that should be performed in these patients, and how complement therapeutics should be explored in the condition. This meeting report represents the current consensus view of the group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.