For the development of a rechargeable metal-air battery, which is expected to become one of the most widely used batteries in the future, slow kinetics of discharging and charging reactions at the air electrode, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, are the most critical problems. Here we report that Ruddlesden-Popper-type layered perovskite, RP-LaSr3Fe3O10 (n = 3), functions as a reversible air electrode catalyst for both ORR and OER at an equilibrium potential of 1.23 V with almost no overpotentials. The function of RP-LaSr3Fe3O10 as an ORR catalyst was confirmed by using an alkaline fuel cell composed of Pd/LaSr3Fe3O10-2x(OH)2x·H2O/RP-LaSr3Fe3O10 as an open circuit voltage (OCV) of 1.23 V was obtained. RP-LaSr3Fe3O10 also catalyzed OER at an equilibrium potential of 1.23 V with almost no overpotentials. Reversible ORR and OER are achieved because of the easily removable oxygen present in RP-LaSr3Fe3O10. Thus, RP-LaSr3Fe3O10 minimizes efficiency losses caused by reactions during charging and discharging at the air electrode and can be considered to be the ORR/OER electrocatalyst for rechargeable metal-air batteries.
The β-decay half-lives of 110 neutron-rich isotopes of the elements from 37 Rb to 50 Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A ≈ 130) and the rare-earth-element (A ≈ 160) abundance peaks may result from the freeze-out of an ðn; γÞ ⇄ ðγ; nÞ equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the PRL 114, 192501 (2015) P H Y S I C A L R E V I E W L E T T E R S week ending 15 MAY 2015 0031-9007=15=114(19)=192501 (7) 192501-1 © 2015 American Physical Society r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events. Introduction.-The origin of the heavy elements from iron to uranium is one of the main open questions in science. The slow neutron-capture (s) process of nucleosynthesis [1,2], occurring primarily in helium-burning zones of stars, produces about half of the heavy element abundance in the universe. The remaining half requires a more violent process known as the rapid neutron-capture (r) process [3][4][5][6]. During the r process, in environments of extreme temperatures and neutron densities, a reaction network of neutron captures and β decays synthesizes very neutron-rich isotopes in a fraction of a second. These isotopes, upon exhaustion of the supply of free neutrons, decay into the stable or semistable isotopes observed in the solar system. However, none of the proposed stellar models, including explosion of supernovae [7][8][9][10][11][12] and merging neutron stars [13][14][15][16], can fully explain abundance observations. The mechanism of the r process is also uncertain. At temperatures of one billion degrees or more, photons can excite unstable nuclei which then emit neutrons, thus, counteracting neutron captures in an ðn; γÞ ⇄ ðγ; nÞ equilibrium that determines the r process. These conditions may be found in the neutrino-driven wind following the collapse of a supernova core and the accreting torus formed around the black hole remnant of merging neutron stars. Alternatively, recent r-process models have shown that the r process is also possible at lower temperatures or higher neutron densities where the contribution from ðγ; nÞ reactions is minor. These conditions are expected in supersonically expanding neutrino-driven outflow in low-mass supernovae progenitors (e.g., 8 − 12 M ⊙ ) or prompt ejecta from neutron star mergers [17]. The final abundance distribution may also be dominated by postprocessing effects such as fission of heavy nuclei (A ≳ 280) possibly produced in merging neutron stars [18].New clues about the r process have come from the discovery of de...
A search for isomeric γ-decays among fission fragments from 345 MeV/nucleon 238 U has been performed at the RIKEN Nishina Center RI Beam Factory. Fission fragments were selected and identified using the superconducting in-flight separator BigRIPS and were implanted in an aluminum stopper. Delayed γ-rays were detected using three clover-type high-purity germanium detectors located at the focal plane within a time window of 20 μs following the implantation. We identified a total of 54 microsecond isomers with half-lives of ~ 0. on the obtained spectroscopic information and the systematics in neighboring nuclei. Nature of the nuclear isomerism is discussed in relation to evolution of nuclear structure.KEYWORDS: Nuclear reactions Be( 238 U, x) and Pb( 238 U, x) E = 345 MeV/nucleon, in-flight fission, fission fragments, in-flight RI beam separator, short-lived isomers, new isomers, half-life, γ-ray relative intensity, γγ coincidence, proposed level schemes DOI: PACS number(s): 23.35.+g, 23.20.Lv, 29.38.Db _____________________ *
A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238 U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: Since the pioneering production of radioactive isotope (RI) beams in the 1980s, 1) studies of exotic nuclei far from stability have been attracting much attention. Neutron-rich exotic nuclei are of particular interest, because new phenomena such as neutron halos, neutron skins, and modifications of shell structure have been discovered.2-5) Furthermore these neutron-rich nuclei are important in relation to astrophysical interests, 6) because many of them play a role in the astrophysical r-process. 7) To make further advances in nuclear science and nuclear astrophysics, it is essential to expand the region of accessible exotic nuclei towards the neutron dripline. In-flight fission of a uranium beam is known to be an excellent mechanism for this purpose, having large production cross sections for neutron-rich exotic nuclei. became operational, in which the superconducting in-flight separator BigRIPS 10,11) has been used for the production of RI beams. The BigRIPS separator is designed as a two-stage separator with large acceptance, so that excellent features of in-flight fission can be exploited. In May 2007, right after the commissioning of the BigRIPS separator, we performed an experiment to search for new isotopes using in-flight fission of a 345 MeV/nucleon 238 U beam, aiming to expand the LETTERS Ã
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.