We report observations of the Cabibbo suppressed decays B-->D((*))K- using a 10.4 fb(-1) data sample accumulated at the Upsilon(4S) resonance with the Belle detector at the KEKB e(+)e(-) storage ring. We find that the ratios of Cabibbo suppressed to Cabibbo favored branching fractions are B(B--->D0K-)/B(B--->D0pi(-)) = 0.079+/-0.009+/-0.006, B(B(0)-->D+K-)/B(B(0)-->D+pi(-)) = 0.068+/-0.015+/-0.007, B(B--->D(*0)K-)/B(B--->D(*0)pi(-)) = 0.078+/-0.019+/-0.009, and B(B(0)-->D(*+)K-)/B(B(0)-->D(*+)pi(-)) = 0.074+/-0.015+/-0.006. These are the first observations of the B-->D+K-, D(*0)K-, and D(*+)K- decay processes.
We report a measurement of the branching fraction ratios R(D ( * ) ) ofB → D ( * ) τ −ν τ relative tō B → D ( * ) −ν (where = e or µ) using the full Belle data sample of 772 × 10 6 BB pairs collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e + e − collider. The measured values are R(D) = 0.375 ± 0.064(stat.) ± 0.026(syst.) and R(D * ) = 0.293 ± 0.038(stat.) ± 0.015(syst.). The analysis uses hadronic reconstruction of the tag-side B meson and purely leptonic τ decays. The results are consistent with earlier measurements and do not show a significant deviation from the standard model prediction.
Using the CLEO II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons 0 , , and Ј. From our measurements we have obtained the form factors associated with the electromagnetic transitions ␥*␥→meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV 2 for 0 , , and Ј, respectively, and have made comparisons to various theoretical predictions. ͓S0556-2821͑98͒01001-7͔
A new compound composed of Nd, Fe, and a small quantity of B about 1 weight has been found, which has a tetragonal structure with lattice constants a = 0.880 nm and c = 1.221 nm. This phase, which has the approximate composition, 12 atom Nd, 6 atom B and balance Fe, possesses remarkable magnetic proper ties. From the approach to saturation an anisotropy con stant of about 3.5 MJ/m 3 can be calculated, while satura tion magnetization amounts to 1.35 T. The magnetiza tion versus temperature curve shows a Curie tempera ture of 585 K, which is much higher than those of the Fe and light rare earth binary compounds. Based on the new compound, sintered permanent magnets have been developed which have a record high energy product. Permanent magnet properties and physical properties of a typical specimen which has the composition Nd15B8Fe are as follows: Br = 1.23 T, HcB = 880 kA/m, HcI = 960 kA/ m, BH max = 290 kJ/m 3 , temperature coe cient of Br = 1260 ppm/K, density = 7.4 Mg/m 3 , specific resistivity = 1.4 μ m, Vickers hardness = 600, flexual strength = 250 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.