This paper will discuss the design and construction of BESIII [1], which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + ecollider [2]. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in the steel magnetic flux return. The level 1 trigger system, Data Acquisition system and the event filter system based on networked computers will also be described.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 fb −1 of pp collisions at √ s = 13 TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns. Keywords: Hadron-Hadron scattering (experiments)ArXiv ePrint: 1712.02118Open Access, Copyright CERN, for the benefit of the ATLAS Collaboration. Article funded by SCOAP 3 .https://doi.org/10.1007/JHEP06 (2018) [7], SUSY particles are produced in pairs and decay such that their final products consist only of SM particles and the stable lightest supersymmetric particle (LSP). In many supersymmetric models, the supersymmetric partners of the SM W boson fields, the wino fermions, are the lightest gaugino states. In this case, the lightest of the charged mass eigenstates, a chargino, and the lightest of the neutral mass eigenstates, a neutralino, are both almost pure wino and nearly mass-degenerate. As a result, the lightest chargino can have a lifetime long enough that it can reach the AT-LAS detector before decaying. For example, anomaly-mediated supersymmetry breaking (AMSB) scenarios [8,9] naturally predict a pure wino LSP, which is a dark-matter candidate. The mass-splitting between the charged and neutral wino (∆mχ 1 ) in such models is suppressed at tree level by the approximate custodial symmetry; it has been calculated at the two-loop level to be around 160 MeV [10], corresponding to a chargino lifetime of about 0.2 ns [11]. This prediction for the value of the lifetime is actually a general feature of models with a wino LSP: within the generated models of the ATLAS phenomenological Minimal Supersymmetric Standard Model (pMSSM) scan [12] that have a wino-like LSP, about 70% have a charged-wino lifetime between 0.15 ns and 0.25 ns. Most of the models in the other 30% have a larger mass-splitting (and therefore the charged wino has a shorter lifetime) due to a non-decoupled higgsino mass. The search presented here is sensitive to a wide range of lifetimes, from 10 ps to 10 ns, and reaches maximum sensitivity for lifetimes around 1 ns.The decay products of SUSY particles that are strongly mass-degenerate with the lightest neutralino leave little visible energy in the detector. T...
Narrow resonances decaying into W W , W Z or ZZ boson pairs are searched for in 139 fb −1 of proton-proton collision data at a centre-of-mass energy of √ s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter-and tracker-inputs compatible with the hadronic decay of a boosted W or Z boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.
Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in p p collisions with the ATLAS detector at √ s = 13 TeVThe ATLAS Collaboration A search for a right-handed gauge boson W R , decaying into a boosted right-handed heavy neutrino N R , in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb −1 . The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared to the expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the W R and N R mass plane. Mass values of the W R smaller than 3.8-5 TeV are excluded for N R in the mass range 0.1-1.8 TeV.The ATLAS detector [25] at the Large Hadron Collider (LHC) is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS). The ID consists of silicon pixel, silicon microstrip, and straw-tube transition-radiation tracking detectors, covering the pseudorapidity range |η| < 2.5. The calorimeter system covers the pseudorapidity range |η| < 4.9. Electromagnetic calorimetry is provided by barrel and endcap high-granularity lead and liquid-argon (LAr) sampling calorimeters, within the region |η| < 3.2. There is an additional thin LAr presampler covering |η| < 1.8, to correct for energy loss in material upstream of the calorimeters. For |η| < 2.5, the LAr calorimeters are divided into three layers in depth. Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter, segmented into three barrel structures within |η| < 1.7, and two copper/LAr hadronic endcap calorimeters, which cover the region 1.5 < |η| < 3.2. The forward solid angle up to |η| = 4.9 is covered by copper/LAr and tungsten/LAr calorimeter modules, which are optimised for energy measurements of electrons/photons and hadrons, respectively. The muon spectrometer is the outermost layer of the detector, and is designed to measure muons up to |η| of 2.7. It comprises separate trigger and high-precision tracking chambers that measure the deflection of muons in a magnetic field generated by superconducting air-core toroids. The muon trigger chambers cover up to |η| of 2.4.The ATLAS detector selects events using a tiered trigger system [26]. The first level is implemented in custom electronics and reduces the event rate from the bunch-crossing frequency of 40 MHz to a design 1 ATLAS uses a right-handed coord...
The azimuthal anisotropy of charged particles produced in √ s NN = 8.16 TeV p+Pb collisions is measured with the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 165 nb −1 that was collected in 2016. Azimuthal anisotropy coefficients, elliptic v 2 and triangular v 3 , extracted using two-particle correlations with a non-flow template fit procedure, are presented as a function of particle transverse momentum (p T) between 0.5 and 50 GeV. The v 2 results are also reported as a function of centrality in three different particle p T intervals. The results are reported from minimum-bias events and jet-triggered events, where two jet p T thresholds are used. The anisotropies for particles with p T less than about 2 GeV are consistent with hydrodynamic flow expectations, while the significant non-zero anisotropies for p T in the range 9-50 GeV are not explained within current theoretical frameworks. In the p T range 2-9 GeV, the anisotropies are larger in minimum-bias than in jet-triggered events. Possible origins of these effects, such as the changing admixture of particles from hard scattering and the underlying event, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.