A new scientific frontier opened in 2009 with the start of operations of the world's first X-ray free-electron laser (FEL), the Linac Coherent Light Source (LCLS), at SLAC National Accelerator Laboratory. LCLS provides femtosecond pulses of X-rays (270 eV to 11.2 keV) with very high peak brightness to access new domains of ultrafast X-ray science. This article presents the fundamental FEL physics and outlines the LCLS source characteristics, along with the experimental challenges, strategies, and instrumentation that accompany this novel type of X-ray source. The main part of the article reviews the scientific achievements since the inception of LCLS in the five primary areas it serves: atomic, molecular and optical physics, condensed matter physics, matter in extreme conditions, chemistry and soft matter, and biology.
Spectrally resolved scattering of ultrafast K-alpha x-rays has provided experimental validation of the modeling of the compression and heating of shocked matter. The elastic scattering component has characterized the evolution and coalescence of two shocks launched by a nanosecond laser pulse into lithium hydride with an unprecedented temporal resolution of 10 picoseconds. At shock coalescence, we observed rapid heating to temperatures of 25,000 kelvin when the scattering spectra show the collective plasmon oscillations that indicate the transition to the dense metallic plasma state. The plasmon frequency determines the material compression, which is found to be a factor of 3, thereby reaching conditions in the laboratory relevant for studying the physics of planetary formation.
The emergence of hard X-ray free electron lasers (XFELs) enables new insights into many fields of science. These new sources provide short, highly intense, and coherent X-ray pulses. In a variety of scientific applications these pulses need to be strongly focused. In this article, we demonstrate focusing of hard X-ray FEL pulses to 125 nm using refractive x-ray optics. For a quantitative analysis of most experiments, the wave field or at least the intensity distribution illuminating the sample is needed. We report on the full characterization of a nanofocused XFEL beam by ptychographic imaging, giving access to the complex wave field in the nanofocus. From these data, we obtain the full caustic of the beam, identify the aberrations of the optic, and determine the wave field for individual pulses. This information is for example crucial for high-resolution imaging, creating matter in extreme conditions, and nonlinear x-ray optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.