Biomimicking ceramics have been developed to induce efficient recovery of damaged hard tissues. Among them, calcium phosphate-based bioceramics have been the most widely used because of their similar composition with human hard tissue and excellent biocompatibilities. However, the incomplete understanding of entire inorganic phases in natural bone has limited the recreation of complete bone compositions. In this work, broad biomedical evaluation of whitlockite (WH: Ca18Mg2(HPO4)2(PO4)12), which is the secondary inorganic phase in bone, is conducted to better understand human hard tissue and to seek potential application as a biomaterial. Based on the recently developed gram-scale method for synthesizing WH nanoparticles, the properties of WH as a material for cellular scaffolding and bone implants are assessed and compared to those of hydroxyapatite (HAP: Ca10(PO4)6(OH)2) and β-tricalcium phosphate (β-TCP: β-Ca3(PO4)2). WH-reinforced composite scaffolds facilitate bone-specific differentiation compared to HAP-reinforced composite scaffolds. Additionally, WH implants induce similar or better bone regeneration in calvarial defects in a rat model compared to HAP and β-TCP implants, with intermediate resorbability. New findings of the properties of WH that distinguish it from HAP and β-TCP are significant in understanding human hard tissue, mimicking bone tissue at the nanoscale and designing functional bioceramics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.