RNA plays a key role in a variety of cell activities. However, it is difficult to capture its structure dynamics by the traditional experimental methods because of the inherent limitations. Molecular dynamics simulation has become a valuable complement to the experimental methods. Previous studies have indicated that the current force fields cannot accurately reproduce the conformations and structural dynamics of RNA. Therefore, an RNA-specific force field was developed to improve the conformation sampling of RNA. The distribution of ζ/α dihedrals of tetranucleotides was optimized by a reweighting method, and the grid-based energy correction map (CMAP) term was first introduced into the Amber RNA force field of f f 99bsc0χOL3, named f f 99OL3_CMAP1. Extensive validations of tetranucleotides and tetraloops show that f f 99OL3_CMAP1 can significantly decrease the population of an incorrect structure, increase the consistency between the simulation results and experimental values for tetranucleotides, and improve the stability of tetraloops. f f 99OL3_CMAP1 can also precisely reproduce the conformation of a duplex and riboswitches. These findings confirm that the newly developed force field ff 99OL3_CMAP1 can improve the conformer sampling of RNA.
Intrinsically disordered proteins (IDPs) are proteins without a fixed three-dimensional (3D) structure under physiological conditions and are associated with Parkinson’s disease, Alzheimer’s disease, cancer, cardiovascular disease, amyloidosis, diabetes, and other diseases. Experimental methods can hardly capture the ensemble of diverse conformations for IDPs. Molecular dynamics (MD) simulations can sample continuous conformations that might provide a valuable complement to experimental data. However, the accuracy of MD simulations depends on the quality of force field. In particular, the evolutionary conservation and coevolution of IDPs introduce that current force fields could not precisely reproduce the conformation of IDPs. In order to improve the performance of force field, deep learning and reweighting methods were used to automatically generate personal force field parameters for intrinsically disordered and ordered proteins. At first, the deep learning method predicted more accuracy φ/ψ dihedral of residue than the previous method. Then, reweighting optimized the personal force field parameters for each residue. Finally, typical representative systems such as IDPs, structure protein, and fast-folding protein were used to evaluate this force field. The results indicate that two personal force field parameters (named PPFF1 and PPFF1_af2) could better reproduce the experimental observables than ff03CMAP force field. In summary, this strategy will provide feasibility for the development of precise personal force fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.