Methionine-restricted diets (MRD) show an integrated series of beneficial health effects, including improving insulin sensitivity, limiting fat deposition, and decreasing oxidative stress, and inflammation responses. We aimed to explore the systemic responses to a MRD in mice fed with a high fat (HFD) and clarify the possible mechanism. Mice were fed with a control diet (0.86% methionine + 4% fat, CON), HFD (0.86% methionine + 20% fat), or MRD (0.17% methionine + 20% fat) for 22 consecutive weeks. HFD-fed mice showed widespread systemic metabolic disorders and thyroid dysfunction. A MRD significantly increased energy expenditure (e.g. fatty acid oxidation, glycolysis, and tricarboxylic acid cycle metabolism), regulated protein homeostasis, improved gut microbiota functions, prevented thyroid dysfunction, increased plasma thyroxine and triiodothyronine levels, decreased plasma thyroid stimulating hormone levels, increased type 2 deiodinase (DIO2) activity, and up-regulated mRNA and protein expression levels of DIO2 and thyroid hormone receptor α1 in the skeletal muscle. These results suggest that a MRD can improve the metabolic disorders induced by a HFD, and especially regulate energy and protein homeostasis likely through improved thyroid function. Thus, reducing methionine intake (e.g. through a vegan diet) may improve metabolic health in animals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.