Phosphate
diester hydrolysis is strongly accelerated, by a factor
of 104, in the presence of artificial enzymes especially
designed in the light of spatiotemporal concepts, anchoring imidazoles
in a pillar[5]arene matrix. Host:guest complexes cleave the aryl phosphodiesters
via nucleophilic attack of the properly placed imidazole moieties
with the release of 2,4-dinitrophenolate and the formation of unstable
phosphoroamidates that regenerate the catalyst and 2,4-dinitrophenyl
phosphate. Comparison of the reactivity of P5IMD with that of imidazole
shows a 270-fold increase. Asymmetrical diesters allow the formation
of two different docking structures of the host:guest complex, with
just one being reactive and allowing selectivity increases of 102-fold, compared with the reaction in bulk water of the same
asymmetrical diesters.
The rate of specific hydrogen ion-catalyzed hydrolysis of 2-( p-heptoxyphenyl)-1,3-dioxolane and acid-base equilibrium of 4-carboxy-1-n-dodecylpyridinium in zwitterionic micelles of SB3-14, C14H29NMe2+(CH2)3SO3(-) are controlled by NaClO4, which induces anionic character and uptake of H3O+ in the micelles. Other salts, e.g., NaF, NaCl, NaBr, NaNO3, NaI, NaBF4, have similar, but smaller, effects on the uptake of H3O+. Salt effects upon zeta potentials of SB3-14 micelles, estimated by capillary electrophoresis, are anion specific, and the anion order is similar to that of the rates of acid hydrolysis and of acid-base equilibria. Fluorescence quenching shows that the micellar aggregation number is not very sensitive to added salts, consistent with electrophoretic evidence. These specific anion effects follow the Hofmeister series and are related to anion hydration free energies.
The reaction between the benzohydroxamate anion (BHO(-)) and bis(2,4-dinitrophenyl)phosphate (BDNPP) has been examined kinetically, and the products were characterized by mass and NMR spectroscopy. The nucleophilic attack of BHO(-) follows two reaction paths: (i) at phosphorus, giving an unstable intermediate that undergoes a Lossen rearrangement to phenyl isocyanate, aniline, diphenylurea, and O-phenylcarbamyl benzohydroxamate; and (ii) on the aromatic carbon, giving an intermediate that was detected but slowly decomposes to aniline and 2,4-dinitrophenol. Thus, the benzohydroxamate anion can be considered a self-destructive molecular scissor since it reacts and loses its nucleophilic ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.