Silicone rubber (SR)/vinyl-graphene oxide (vinyl-GO) nanocomposites were prepared through the hydrosilylation reaction of silicon hydrogen polydimethylsiloxane (H-PDMS) with vinyl polydimethylsiloxane (vinyl-PDMS), in which vinyl-GO was used as a nano filler. The thermally conductive and antistatic properties of the nanocomposites, and their tensile strength and thermal stability were evaluated. The thermally conductive and antistatic properties increased naturally when the nanocomposites had eight to nine parts of vinyl-GO. The addition of 9 parts of vinyl-GO increased the thermal conductivity to 0.44 from 0.17 W/m−1·K−1 of neat SR and the surface resistance value to 108 from 1014 Ω of neat SR. Vinyl-GO is effective in improving the tensile strength and toughness of the nanocomposites. The tensile strength and elongation at break of the nanocomposites were much higher than that of neat SR, especially for 10 parts of vinyl-GO in the nanocomposite, and the tensile strength was 1.84 MPa and the elongation at break was 314.1%. Additionally, compared with neat SR, the nanocomposites had a much higher thermal stability. For eight parts of vinyl-GO in the nanocomposites, H-PDMS with the selected silicon hydrogen content and vinyl-PDMS with the selected vinyl content could offer an appropriate cross-linking degree that suits the character of GO. When the nanocomposite had eight parts of vinyl-GO, its scanning electron microscope exhibited a monolayer GO with folded, twisted, and local surface folds. However, there was a certain amount of multilayer aggregation of GO for 10 parts of vinyl-GO in the nanocomposite.
Realizing a high color rendering index (CRI) in Ce:LuAG transparent ceramics (TCs) with desired thermal stability is essential to their applications in white LEDs/LDs as color converters. In this study, based on the scheme of configuring the red component by Cr3+ doping, an efficient spectral regulation was realized in Ce,Cr:LuAG TCs. A unilateral shift phenomenon could be observed in both photoluminescence (PL) and photoluminescence excitation (PLE) spectra of TCs. By constructing TC-based white LED/LD devices in a remote excitation mode, luminescence properties of Ce,Cr:LuAG TCs were systematically investigated. The CRI values of Ce:LuAG TC based white LEDs could be increased by a magnitude of 46.2%. Particularly, by combining the as fabricated Ce,Cr:LuAG TCs with a 0.5 at% Ce:YAG TC, surprising CRI values of 88 and 85.5 were obtained in TC based white LEDs and LDs, respectively. Therefore, Ce,Cr:LuAG TC is a highly promising color convertor for high-power white LEDs/LDs applied in general lighting and displaying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.