In our previous study, osteopontin (OPN) was identified as one of the leading genes that promote the metastasis of hepatocellular carcinoma (HCC). However, the mechanism by which OPN promotes metastasis of HCC is not understood. In this study, RNA interference mediated by viral vectors-which could induce a long-lasting down-regulation in gene expression-was applied to analyze the role of OPN in metastasis of HCC. Three lentiviral vectors encoding microRNA against OPN, Lenti.OPNi-1, Lenti.OPNi-2, and Lenti.OPNi-3, were constructed and found to down-regulate the OPN level by 62%, 78%, and 95%, respectively, in HCCLM3 cells which had an overexpression of OPN and a higher metastatic potential. Consequently, both Lenti.OPNi-2 and Lenti.OPNi-3 induced a significant decrease in matrix metalloproteinase ( H epatocellular carcinoma (HCC) is the third leading cause of cancer death in the world, and the second in China. 1,2 The extremely poor prognosis of patients with HCC is largely due to the high rate of tumor recurrence or intrahepatic metastasis after surgical resection. 3 Therefore, it is very important to search for molecular markers related to metastasis, which would provide new predictors as well
The oral anti-diabetic drug metformin has been found to reduce cardiovascular complications independent of glycemic control in diabetic patients. However, its role in diabetic retinal microvascular complications is not clear. This study is to investigate the effects of metformin on retinal vascular endothelium and its possible mechanisms, regarding two major pathogenic features of diabetic retinopathy: angiogenesis and inflammation. In human retinal vascular endothelial cell culture, metformin inhibited various steps of angiogenesis including endothelial cell proliferation, migration, and tube formation in a dose-dependent manner. Its anti-angiogenic activity was confirmed in vivo that metformin significantly reduced spontaneous intraretinal neovascularization in a very-low-density lipoprotein receptor knockout mutant mouse (p<0.05). Several inflammatory molecules upregulated by tumor necrosis factor-α in human retinal vascular endothelial cells were markedly reduced by metformin, including nuclear factor kappa B p65 (NFκB p65), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and interleukin-8 (IL-8). Further, metformin significantly decreased retinal leukocyte adhesion (p<0.05) in streptozotocin-induced diabetic mice. Activation of AMP-activated protein kinase was found to play a partial role in the suppression of ICAM-1 and MCP-1 by metformin, but not in those of NFκB p65 and IL-8. Our findings support the notion that metformin has considerable anti-angiogenic and anti-inflammatory effects on retinal vasculature. Metformin could be potentially used for the purpose of treating diabetic retinopathy in addition to blood glucose control in diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.