Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs) equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.
Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV). The UHD 185 images were used to calculate the crop height and hyperspectral reflectance of winter wheat canopies from hyperspectral and panchromatic images. We constructed several single-parameter models for AGB estimation based on spectral parameters, such as specific bands, spectral indices (e.g., Ratio Vegetation Index (RVI), NDVI, Greenness Index (GI) and Wide Dynamic Range VI (WDRVI)) and crop height and several models combined with spectral parameters and crop height. Comparison with experimental results indicated that incorporating crop height into the models improved the accuracy of AGB estimations (the average AGB is 6.45 t/ha). The estimation accuracy of single-parameter models was low (crop height only: R 2 = 0.50, RMSE = 1.62 t/ha, MAE = 1.24 t/ha; R 670 only: R 2 = 0.54, RMSE = 1.55 t/ha, MAE = 1.23 t/ha; NDVI only: R 2 = 0.37, RMSE = 1.81 t/ha, MAE = 1.47 t/ha; partial least squares regression R 2 = 0.53, RMSE = 1.69, MAE = 1.20), but accuracy increased when crop height and spectral parameters were combined (partial least squares regression modeling: R 2 = 0.78, RMSE = 1.08 t/ha, MAE = 0.83 t/ha; verification: R 2 = 0.74, RMSE = 1.20 t/ha, MAE = 0.96 t/ha). Our results suggest that crop height determined from the new UAV-based snapshot hyperspectral sensor can improve AGB estimation and is advantageous for mapping applications. This new method can be used to guide agricultural management.
BackgroundAbove-ground biomass (AGB) is a basic agronomic parameter for field investigation and is frequently used to indicate crop growth status, the effects of agricultural management practices, and the ability to sequester carbon above and below ground. The conventional way to obtain AGB is to use destructive sampling methods that require manual harvesting of crops, weighing, and recording, which makes large-area, long-term measurements challenging and time consuming. However, with the diversity of platforms and sensors and the improvements in spatial and spectral resolution, remote sensing is now regarded as the best technical means for monitoring and estimating AGB over large areas.ResultsIn this study, we used structural and spectral information provided by remote sensing from an unmanned aerial vehicle (UAV) in combination with machine learning to estimate maize biomass. Of the 14 predictor variables, six were selected to create a model by using a recursive feature elimination algorithm. Four machine-learning regression algorithms (multiple linear regression, support vector machine, artificial neural network, and random forest) were evaluated and compared to create a suitable model, following which we tested whether the two sampling methods influence the training model. To estimate the AGB of maize, we propose an improved method for extracting plant height from UAV images and a volumetric indicator (i.e., BIOVP). The results show that (1) the random forest model gave the most balanced results, with low error and a high ratio of the explained variance for both the training set and the test set. (2) BIOVP can retain the largest strength effect on the AGB estimate in four different machine learning models by using importance analysis of predictors. (3) Comparing the plant heights calculated by the three methods with manual ground-based measurements shows that the proposed method increased the ratio of the explained variance and reduced errors.ConclusionsThese results lead us to conclude that the combination of machine learning with UAV remote sensing is a promising alternative for estimating AGB. This work suggests that structural and spectral information can be considered simultaneously rather than separately when estimating biophysical crop parameters.Electronic supplementary materialThe online version of this article (10.1186/s13007-019-0394-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.