The expression of RET, nuclearRAS, and ERK proteins is greatly enhanced in PTC cells and HT oxyphil cells. Thus, the RET/PTC-RAS-BRAF cascade may be involved in the development of PTC and oxyphil cell metaplasia in HT. Our results show the possibility of a molecular link between oxyphil cell metaplasia in HT and the progression of PTC.
Oxidative stress induced by chronic hyperglycemia in type 2 diabetes plays a crucial role in progressive loss of β-cell mass through β-cell apoptosis. Glucagon like peptide-1 (GLP-1) has effects on preservation of β-cell mass and its insulin secretory function. GLP-1 possibly increases islet cell mass through stimulated proliferation from β-cell and differentiation to β-cell from progenitor cells. Also, it probably has an antiapoptotic effect on β-cell, but detailed mechanisms are not proven. Therefore, we examined the protective mechanism of GLP-1 in β-cell after induction of oxidative stress. The cell apoptosis decreased to ~50% when cells were treated with 100 µM H2O2 for up to 2 hr. After pretreatment of Ex-4, GLP-1 receptor agonist, flow cytometric analysis shows 41.7% reduction of β-cell apoptosis. This data suggested that pretreatment of Ex-4 protect from oxidative stress-induced apoptosis. Also, Ex-4 treatment decreased GSK3β activation, JNK phosphorylation and caspase-9, -3 activation and recovered the expression of insulin2 mRNA in β-cell lines and secretion of insulin in human islet. These results suggest that Ex-4 may protect β-cell apoptosis by blocking the JNK and GSK3β mediated apoptotic pathway.
Sleep disorders are great problems in modern society. Even minimal changes of sleep can affect health. Especially, patients with pulmonary diseases complain of sleep problems such as sleep disturbance and insomnia. Recent studies have shown an association between sleep deprivation (SD) and inflammation, however, the underlying mechanisms remain unclear. In the present study, we investigated whether melatonin protects against acute lung inflammation in SD. Male ICR mice were deprived sleep using modified multiplatform water bath for 3 days. Acute lung inflammation was induced by lipopolysaccharide (LPS; 5 mg/kg). Melatonin (5 mg/kg) and LPS was administered in SD mice at day 2. Mice were divided into five groups as control, SD, LPS, LPS + SD, and LPS + SD + melatonin (each group, n = 11). Mice were killed on day 3 after treatment of melatonin and LPS for 24 hr. Lung tissues were collected for histological examination and protein analysis. The malondialdehyde (MDA) level was determined for the effect of oxidative stress. Melatonin restored weight loss in LPS + SD. Histological findings revealed alveolar damages with inflammatory cell infiltration in LPS + SD. Melatonin remarkably attenuated the alveolar damages. In western blot analysis, LPS reduced the levels of Bcl-XL and procaspase-3 in SD mice. After treatment with melatonin, the levels of Bcl-XL and procaspase-3 increased when compared with LPS + SD. LPS treatment showed an increase of TUNEL-positive cells, whereas melatonin prevented the increase of cell death in LPS + SD animals. In lipid peroxidation assay, melatonin significantly reduced the elevated MDA level in LPS + SD. Our results suggest that melatonin attenuates acute lung inflammation during SD via anti-apoptotic and anti-oxidative actions.
Sleep deprivation (SD) is an epidemic phenomenon in modern countries, and its harmful effects are well known. SD acts as an aggravating factor in inflammatory bowel disease. Melatonin is a sleep-related neurohormone, also known to have antioxidant and anti-inflammatory effects in the gastrointestinal tract; however, the effects of melatonin on colitis have been poorly characterized. Thus, in this study, we assessed the measurable effects of SD on experimental colitis and the protective effects of melatonin. For this purpose, male imprinting control region (ICR) mice (n=24) were used; the mice were divided into 4 experimental groups as follows: the control, colitis, colitis with SD and colitis with SD and melatonin groups. Colitis was induced by the administration of 5% dextran sulfate sodium (DSS) in the drinking water for 6 days. The mice were sleep-deprived for 3 days. Changes in body weight, histological analyses of colon tissues and the expression levels of pro-inflammatory cytokines and genes were evaluated. SD aggravated inflammation and these effects were reversed by melatonin in the mice with colitis. In addition, weight loss in the mice with colitis with SD was significantly reduced by the injection of melatonin. Treatment with melatonin led to high survival rates in the mice, in spite of colitis with SD. The levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-17, interferon-γ and tumor necrosis factor-α, in the serum of mice were significantly increased by SD and reduced by melatonin treatment. The melatonin-treated group showed a histological improvement of inflammation. Upon gene analysis, the expression of the inflammatory genes, protein kinase Cζ (PKCζ) and calmodulin 3 (CALM3), was increased by SD, and the levels decreased following treatment with melatonin. The expression levels of the apoptosis-related inducible nitric oxide synthase (iNOS) and wingless-type MMTV integration site family, member 5A (Wnt5a) genes was decreased by SD, but increased following treatment with melatonin. Treatment with melatonin reduced weight loss and prolonged survival in mice with colitis with SD. Melatonin exerted systemic anti-inflammatory effects. Gene analysis revealed a possible mechanism of action of melatonin in inflammation and sleep disturbance. Thus, melatonin may be clinically applicable for patients with inflammatory bowel disease, particulary those suffering from sleep disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.