Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8π-electron anti-aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hückel anti-aromaticity into Craig-type Möbius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal-carbon triple bond. Moreover, these metal-aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement.
Oriented external electric fields (OEEFs) offer a unique chance to tune catalytic selectivity by orienting the alignment of the electric field along the axis of the activated bond for a specific chemical reaction; however, they remain a key experimental challenge. Here, we experimentally and theoretically investigated the OEEF-induced selective catalysis in a two-step cascade reaction of the Diels-Alder addition followed by an aromatization process. Characterized by the mechanically controllable break junction (MCBJ) technique in the nanogap and confirmed by nuclear magnetic resonance (NMR) in bottles, OEEFs are found to selectively catalyze the aromatization reaction by one order of magnitude owing to the alignment of the electric field on the reaction axis. Meanwhile, the Diels-Alder reaction remained unchanged since its reaction axis is orthogonal to the electric fields. This orientation-selective catalytic effect of OEEFs reveals that chemical reactions can be selectively manipulated through the elegant alignment between the electric fields and the reaction axis.
Aromaticity, a highly stabilizing feature of molecules with delocalized electrons in closed circuits, is generally restricted to 'Hückel' systems with 4n þ 2 mobile electrons. Although the Möbius concept extends the principle of aromaticity to 4n mobile electron species, the rare known examples have complex, twisted topologies whose extension is unlikely. Here we report the realization of osmapentalenes, the first planar Möbius aromatic complexes with 16 and 18 valence electron transition metals. The Möbius aromaticity of these osmapentalenes, documented by X-ray structural, magnetic and theoretical analyses, demonstrates the basis of the aromaticity of the parent osmapentalynes. All these osmapentalenes are formed by both electrophilic and nucleophilic reactions of the in-plane p component of the same carbyne carbon, illustrating ambiphilic carbyne reactivity, which is seldom observed in transition metal chemistry. Our results widen the scope of Möbius aromaticity dramatically and open prospects for the generalization of planar Möbius aromatic chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.