Although accumulating evidence has provided insight into the various functions of long-non-coding RNAs (lncRNAs), the exact functions of the majority of such transcripts are still unknown. Here, we report the first computational annotation of lncRNA functions based on public microarray expression profiles. A coding–non-coding gene co-expression (CNC) network was constructed from re-annotated Affymetrix Mouse Genome Array data. Probable functions for altogether 340 lncRNAs were predicted based on topological or other network characteristics, such as module sharing, association with network hubs and combinations of co-expression and genomic adjacency. The functions annotated to the lncRNAs mainly involve organ or tissue development (e.g. neuron, eye and muscle development), cellular transport (e.g. neuronal transport and sodium ion, acid or lipid transport) or metabolic processes (e.g. involving macromolecules, phosphocreatine and tyrosine).
Facilitated by the rapid progress of high-throughput sequencing technology, a large number of long noncoding RNAs (lncRNAs) have been identified in mammalian transcriptomes over the past few years. LncRNAs have been shown to play key roles in various biological processes such as imprinting control, circuitry controlling pluripotency and differentiation, immune responses and chromosome dynamics. Notably, a growing number of lncRNAs have been implicated in disease etiology. With the increasing number of published lncRNA studies, the experimental data on lncRNAs (e.g. expression profiles, molecular features and biological functions) have accumulated rapidly. In order to enable a systematic compilation and integration of this information, we have updated the NONCODE database (http://www.noncode.org) to version 3.0 to include the first integrated collection of expression and functional lncRNA data obtained from re-annotated microarray studies in a single database. NONCODE has a user-friendly interface with a variety of search or browse options, a local Genome Browser for visualization and a BLAST server for sequence-alignment search. In addition, NONCODE provides a platform for the ongoing collation of ncRNAs reported in the literature. All data in NONCODE are open to users, and can be downloaded through the website or obtained through the SOAP API and DAS services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.