During the non-contact geomagnetic detection of pipeline defects, measured signals generally contain noise, which reduces detection efficiency. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) has recently emerged as a signal filtering method, but its filtering performance is influenced by two parameters: the amplitude of added noise and the number of ensemble trials. To solve this issue and improve detection accuracy and distinguishability, a detection method based on improved CEEMDAN (ICEEDMAN) and the Teager energy operator (TEO) is proposed. The magnetic detection signal was first decomposed into a series of intrinsic mode functions (IMFs) by CEEMDAN with initial parameters. Signal IMFs were then distinguished using the Hurst exponent to reconstruct the preliminary filtered signal, and its maximum value (except the zero point) of the normalized autocorrelation function was defined as salp swarm algorithm (SSA) fitness. The optimal parameters that maximize fitness were found by SSA iterations, and their corresponding filtered signal was obtained. Finally, the gradient calculation and TEO were carried out to complete non-contact geomagnetic detection. The results of the simulated signal based on magnetic dipole under a noisy environment and field testing prove that ICEEMDAN denoising has better filtering performance than conventional CEEMDAN denoising methods, and ICEEMDAN-TEO has obvious advantages compared to other detection methods in the aspects of location error, peak side-lobe ratio, and integrated side-lobe ratio.
Vital defect information present in the magnetic field data of oil and gas pipelines can be perceived by developing such non-parametric algorithms that can extract modal features and performs structural assessment directly from the recorded signal data. This paper discusses such output-only modal identification method Complexity Pursuit (CP) based on blind signal separation. An application to the pipeline flaw detection is presented and it is shown that the complexity pursuit algorithm blindly estimates the modal parameters from the measured magnetic field signals. Numerical simulations for multi-degree of freedom systems show that the method can precisely identify the structural parameters. Experiments are performed first in a controlled laboratory environment secondly in real world, on pipeline magnetic field data, recorded using high precision magnetic field sensors. The measured structural responses are given as input to the blind source separation model where the complexity pursuit algorithm blindly extracted the least complex signals from the observed mixtures that were guaranteed to be source signals. The output power spectral densities calculated from the estimated modal responses exhibit rich physical interpretation of the pipeline structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.