Currently, the exploration of fungal organisms for novel metabolite production and its pharmacological applications is much appreciated in the biomedical field. In the present study, the fungal strains were isolated from soil of unexplored Yellapura regions. The potent isolate NP5 was selected based on preliminary screening and identified as Penicillium brasilianum NP5 through morphological, microscopic, and molecular characterizations. Synthesis of silver nanoparticles from P. brasilianum was confirmed by the color change of the reaction mixture and UV-visible surface plasmon resonance (SPR) spectra of 420 nm. Fourier transform infrared (FTIR) analysis revealed the functional groups involved in synthesis. Atomic force microscopy (AFM) and transmission electron microscope (TEM) analysis showed aggregation of the NPs, with sizes ranged from 10 to 60 nm, an average particle size of 25.32 nm, and a polydispersity index (PDI) of 0.40. The crystalline nature and silver as the major element in NP5-AgNPs was confirmed by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The negative value −15.3 mV in Zeta potential exhibited good stability, and thermostability was recorded by thermogravimetric analysis (TGA). NP5-AgNPs showed good antimicrobial activity on selected human pathogens in a concentration-dependent manner. The MTT assay showed concentration-dependent anticancer activity with an IC50 of 41.93 µg/mL on the MDA-MB-231 cell line. Further, apoptotic study was carried out by flow cytometry to observe the rate of apoptosis. The calculated sun protection factor (SPF) value confirms good photoprotection capacity. From the results obtained, NP5-AgNPs can be used in the pharmaceutical field after successful in vitro clinical studies.
Background
The industrial production of silver nanoparticles (AgNPs) and its commercial applications are being considerably increased in recent times, resulting in the release of AgNPs in the environment and enhanced probability of contaminations and their adverse effects on living systems. Based on this, the present study was conducted to evaluate the in vitro cytotoxicity of actinomycete-synthesized AgNPs on Allium cepa (A. cepa) root tip cells. A green synthesis method was employed for biosynthesis of AgNPs from Streptomyces sp. NS-33. However, morphological, physiological, biochemical, and molecular analysis were carried out to characterize the strain NS-33. Later, the synthesized AgNPs were characterized and antibacterial activity was also carried out against pathogenic bacteria. Finally, cytotoxic activity was evaluated on A. cepa root tip cells.
Results
Results showed the synthesis of spherical and polydispersed AgNPs with a characteristic UV-visible (UV-Vis.) spectral peak at 397 nm and average size was 32.40 nm. Energy dispersive spectroscopy (EDS) depicted the presence of silver, whereas Fourier transform infrared (FTIR) studies indicated the presence of various functional groups. The phylogenetic relatedness of Streptomyces sp. NS-33 was found with Streptomyces luteosporeus through gene sequencing. A good antibacterial potential of AgNPs was observed against two pathogenic bacteria. Concerning cytotoxicity, a gradually decreased mitotic index (MI) and increased chromosomal aberrations were observed along with the successive increase of AgNPs concentration.
Conclusions
Therefore, the release of AgNPs into the environment must be prevented, so that it cannot harm plants and other beneficial microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.