Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication.
A hallmark of aged mesenchymal stem/progenitor cells (MSCs) in bone marrow is the pivot of differentiation potency from osteoblast to adipocyte coupled with a decrease in self-renewal capacity. However, how these cellular events are orchestrated in the aging progress is not fully understood. In this study, we have used molecular and genetic approaches to investigate the role of forkhead box P1 (FOXP1) in transcriptional control of MSC senescence. In bone marrow MSCs, FOXP1 expression levels declined with age in an inverse manner with those of the senescence marker p16INK4A. Conditional depletion of Foxp1 in bone marrow MSCs led to premature aging characteristics, including increased bone marrow adiposity, decreased bone mass, and impaired MSC self-renewal capacity in mice. At the molecular level, FOXP1 regulated cell-fate choice of MSCs through interactions with the CEBPβ/δ complex and recombination signal binding protein for immunoglobulin κ J region (RBPjκ), key modulators of adipogenesis and osteogenesis, respectively. Loss of p16INK4A in Foxp1-deficient MSCs partially rescued the defects in replication capacity and bone mass accrual. Promoter occupancy analyses revealed that FOXP1 directly represses transcription of p16INK4A. These results indicate that FOXP1 attenuates MSC senescence by orchestrating their cell-fate switch while maintaining their replicative capacity in a dose- and age-dependent manner.
CD4+ follicular helper T cells (TFH cells) are essential for germinal center (GC) responses and long-lived antibody responses. Here we report that naive CD4+ T cells deficient in the transcription factor Foxp1 ‘preferentially’ differentiated into TFH cells, which resulted in substantially enhanced GC and antibody responses. We found that Foxp1 used both constitutive Foxp1A and Foxp1D induced by stimulation of the T cell antigen receptor (TCR) to inhibit the generation of TFH cells. Mechanistically, Foxp1 directly and negatively regulated interleukin 21 (IL-21); Foxp1 also dampened expression of the costimulatory molecule ICOS and its downstream signaling at early stages of T cell activation, which rendered Foxp1-deficient CD4+ T cells partially resistant to blockade of the ICOS ligand (ICOSL) during TFH cell development. Our findings demonstrate that Foxp1 is a critical negative regulator of TFH cell differentiation.
Many publications report that ablations of segments of peripheral nerves produce the following unfortunate results: (1) Immediate loss of sensory signaling and motor control; (2) rapid Wallerian degeneration of severed distal axons within days; (3) muscle atrophy within weeks; (4) poor behavioral (functional) recovery after many months, if ever, by slowly-regenerating (∼1mm/d) axon outgrowths from surviving proximal nerve stumps; and (5) Nerve allografts to repair gap injuries are rejected, often even if tissue matched and immunosuppressed. In contrast, using a female rat sciatic nerve model system, we report that neurorrhaphy of allografts plus a well-specified-sequence of solutions (one containing polyethylene glycol: PEG) successfully addresses each of these problems by: (a) Reestablishing axonal continuity/signaling within minutes by nonspecific ally PEG-fusing (connecting) severed motor and sensory axons across each anastomosis; (b) preventing Wallerian degeneration by maintaining many distal segments of inappropriately-reconnected, PEG-fused axons that continuously activate nerve-muscle junctions; (c) maintaining innervation of muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (d) inducing remarkable behavioral recovery to near-unoperated levels within days to weeks, almost certainly by CNS and PNS plasticities well-beyond what most neuroscientists currently imagine; and (e) preventing rejection of PEG-fused donor nerve allografts with no tissue matching or immunosuppression. Similar behavioral results are produced by PEG-fused autografts. All results for Negative Control allografts agree with current neuroscience data 1-5 given above. Hence, PEG-fusion of allografts for repair of ablated peripheral nerve segments expand on previous observations in single-cut injuries, provoke reconsideration of some current neuroscience dogma, and further extend the potential of PEG-fusion in clinical practice.
The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed "default" pathway for common dendritic cell progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.