Bursts of gamma ray showers have been observed in coincidence with downward propagating negative leaders in lightning flashes by the Telescope Array Surface Detector (TASD). The TASD is a 700-km 2 cosmic ray observatory located in southwestern Utah, USA. In data collected between 2014 and 2016, correlated observations showing the structure and temporal development of three shower-producing flashes were obtained with a 3-D lightning mapping array, and electric field change measurements were Key Points:• Gamma ray showers have been detected in a surface scintillator array coincident with lightning observed by a lightning mapping array or Delta E antenna • The showers were produced less than 4-5 km above ground in the first 1-2 ms of downward negative breakdown during cloud-to-ground flashes • The source durations are better resolved than for satellite observations and are consistent with being produced by stepping of the initial leader breakdown Supporting Information:• Supporting Information S1 obtained for an additional seven flashes, in both cases colocated with the TASD. National Lightning Detection Network information was also used throughout. The showers arrived in a sequence of 2-5 short-duration (≤10 s) bursts over time intervals of several hundred microseconds and originated at an altitude of ≃3-5 km above ground level during the first 1-2 ms of downward negative leader breakdown at the beginning of cloud-to-ground lightning flashes. The shower footprints, associated waveforms and the effect of atmospheric propagation indicate that the showers consist primarily of downward-beamed gamma radiation. This has been supported by GEANT simulation studies, which indicate primary source fluxes of ≃10 12 -10 14 photons for 16 ∘ half-angle beams. We conclude that the showers are terrestrial gamma ray flashes, similar to those observed by satellites, but that the ground-based observations are more representative of the temporal source activity and are also more sensitive than satellite observations, which detect only the most powerful terrestrial gamma ray flashes.
The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth’s atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed X max distributions with Monte Carlo X max distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data X max distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic X max shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.
In this paper we report the first close, high‐resolution observations of downward‐directed terrestrial gamma‐ray flashes (TGFs) detected by the large‐area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud‐to‐ground and low‐altitude intracloud flashes and that the IBPs are produced by a newly identified streamer‐based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark‐like transient conducting events (TCEs) within the fast streamer system and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub‐pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub‐pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely, as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.