A reliable disease model mimicking Enterovirus 71 (EV71) infection in humans is essential for understanding pathogenesis and for developing a safe and effective vaccine. Commonly used rodent models including mouse or rat models are not suitable for vaccine evaluation because the rodents are resistant to EV71 infection after they reach the age of 6 days. In this study, 21-day-old gerbils inoculated intraperitoneally (IP) with a non mouse-adapted EV71 strain developed neurological lesion-related signs including hind limb paralysis, slowness, ataxia and lethargy similar to those of central nervous system (CNS) infection of EV71 in humans. The infected gerbils eventually died of the neurological lesions and EV71 could be isolated from lung, liver, spleen, kidney, heart, spinal cord, brain cortex, brainstem and skeletal muscle. Significantly high virus replication was detected in spinal cord, brainstem and skeletal muscle by cellular analysis, real-time quantitative PCR (RT-PCR) and immunohistochemical staining. Histopathologic changes such as neuronal degeneration, neuronal loss and neuronophagia were observed in spinal cord, brain cortex, brainstem, and skeletal muscle along with necrotizing myositis and splenic atrophy. Gerbils that received two doses of inactive whole-virus vaccine showed no EV71-specific symptoms after challenged with EV71. In contrast, gerbils that received mock vaccination died of EV71-induced neuropathology after challenged with EV71. The result indicates that gerbils can serve as a reliable disease model for evaluating safety and efficacy of EV71 vaccine.
Coxsackievirus A16 (CA16) is one of the major pathogens associated with human hand, foot, and mouth disease (HFMD) in the Asia-pacific region. Although CA16 infections are generally mild, severe neurological manifestations or even death has been reported. Studies on CA16 pathogenesis and vaccine development are severely hampered because the small animal models that are currently available show major limitations. In this study, gerbils (Meriones unguiculatus) were investigated for their suitability as an animal model to study CA16 pathogenesis and vaccine development. Our results showed that gerbils up to the age of 21 days were fully susceptible to CA16 and all died within five days post-infection. CA16 showed a tropism towards the skeletal muscle, spinal cord and brainstem of gerbils, and severe lesions, including necrosis, were observed. In addition, an inactivated CA16 whole-virus vaccine administrated to gerbils was able to provide full protection to the gerbils against lethal doses of CA16 strains. These results demonstrate that gerbils are a suitable animal model to study CA16 infection and vaccine development.
An outbreak of acute hepatitis recently occurred in a nursing home in Zhejiang Province, China. The objectives of this study were to confirm the outbreak and identify the aetiology, source and transmission patterns. All residents and staff in or near the nursing home during the period from 1 October 2014 to 21 May 2015 were investigated regarding hygiene and for epidemiological information including water and food (eating meat especially pork products). Serum and stool specimens were collected for detection of hepatitis E virus (HEV) antibodies using ELISA and RNA using RT-PCR. Samples that were RNA positive were genotyped. Of 185 senior residents and 24 staff in the nursing home, there were 37 laboratory-confirmed cases during the outbreak. Of these cases, 12 patients (three deaths) were symptomatic with jaundice, a common clinical symptom for hepatitis E infection. HEV strains were isolated from three cases and they formed a single cluster within genotype 4d. A case-control study was conducted to investigate potential risk factors for the outbreak and the results revealed that cases more often washed their dishes and rinsed their mouths using tap water than the controls (P < 0·05). Based on hygiene investigation and meteorological information, it is likely that HEV-infected sewage and faeces contaminated the water network on rainy days. Collectively, these results suggest that the outbreak of HEV genotype 4 infection was most likely caused by contaminated tap water rather than food.
BackgroundOwing to the coronavirus disease 2019 (COVID-19) pandemic and the emergency use of different types of COVID-19 vaccines, there is an urgent need to consider the effectiveness and persistence of different COVID-19 vaccines.MethodsWe investigated the immunogenicity of CoronaVac and Covilo, two inactivated vaccines against COVID-19 that each contain inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The levels of neutralizing antibodies to live SARS-CoV-2 and the inhibition rates of neutralizing antibodies to pseudovirus, as well as the immunoglobulin (Ig)G and IgM responses towards the spike (S) and nucleocapsid (N) protein of SARS-CoV-2 at 180 days after two-dose vaccination were detected.ResultsThe CoronaVac and Covilo vaccines induced similar antibody responses. Regarding neutralizing antibodies to live SARS-CoV-2, 77.9% of the CoronaVac vaccine recipients and 78.3% of the Covilo vaccine recipients (aged 18–59 years) seroconverted by 28 days after the second vaccine dose. Regarding SARS-CoV-2-specific antibodies, 97.1% of the CoronaVac vaccine recipients and 95.7% of the Covilo vaccine recipients seroconverted by 28 days after the second vaccine dose. The inhibition rates of neutralizing antibody against a pseudovirus of the SARS-CoV-2 Delta variant were significantly lower compared with those against a pseudovirus of wildtype SARS-CoV-2. Associated with participant characteristics and antibody levels, persons in the older age group and with basic disease, especially a chronic respiratory disease, tended to have lower anti-SARS-CoV-2 antibody seroconversion rates.ConclusionAntibodies that were elicited by these two inactivated COVID-19 vaccines appeared to wane following their peak after the second vaccine dose, but they persisted at detectable levels through 6 months after the second vaccine dose, and the effectiveness of these antibodies against the Delta variant of SARS-CoV-2 was lower than their effectiveness against wildtype SARS-CoV-2, which suggests that attention must be paid to the protective effectiveness, and its persistence, of COVID-19 vaccines on SARS-CoV-2 variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.