SUMMARY The cellular and molecular mechanisms mediating histamine-independent itch in primary sensory neurons are largely unknown. Itch induced by chloroquine (CQ) is a common side-effect of this widely used anti-malarial drug. Here we show that Mrgprs, a family of G protein-coupled receptors expressed exclusively in peripheral sensory neurons, function as itch receptors. Mice lacking a cluster of Mrgpr genes display significant deficits in itch induced by CQ but not histamine. CQ directly excites sensory neurons in an Mrgpr-dependent manner. CQ specifically activates mouse MrgprA3 and human MrgprX1. Loss- and gain-of-function studies demonstrate that MrgprA3 is required for CQ responsiveness in mice. Furthermore, MrgprA3-expressing neurons respond to histamine and co-express Gastrin-Releasing Peptide, a peptide involved in itch sensation, and MrgprC11. Activation of these neurons with MrgprC11-specific agonist BAM8-22 induces itch in wild-type but not mutant mice. Therefore, Mrgprs may provide molecular access to itch-selective neurons and constitute novel targets for itch therapeutics.
Itch-specific neurons have been sought for decades. The existence of such neurons is in doubt recently due to the observation that itch-mediating neurons also respond to painful stimuli. Here, we genetically labeled and manipulated MrgprA3+ neurons in dorsal root ganglion (DRG) and found that they exclusively innervate the epidermis of the skin and respond to multiple pruritogens. Ablation of MrgprA3+ neurons led to significant reductions in scratching evoked by multiple pruritogens and occurring spontaneously under chronic itch conditions whereas pain sensitivity remained intact. Importantly, mice with TRPV1 exclusively expressed in MrgprA3+ neurons exhibited only itch- and not pain behavior in response to capsaicin. Although MrgprA3+ neurons are sensitive to noxious heat, activation of TRPV1 in these neurons by noxious heat did not alter pain behavior. These data suggest that MrgprA3 defines a specific subpopulation of DRG neurons mediating itch. Our study opens new avenues for studying itch and developing anti-pruritic therapies.
Taxol produces neuropathic pain with three distinct zones of involvement in the extremities. Most distally is an area of on-going pain and proximal to this is a zone of sensory disturbance but not overt pain. These two areas were confined in all but one case to the glabrous skin of the hands and/or feet. More proximal is an area not recognized by the patients as involved with pain or sensory disturbance yet wherein quantitative sensory tests nevertheless reveal altered sensibility. Impairment of perception to light touch, normally conveyed by myelinated fibers, was dramatically altered in all three areas, being approximately 50-fold greater than normal in areas of pain and sensory disturbance as well as in areas of skin perceived by the patients as not affected. Impairment of perception to sharpness, normally conveyed by small myelinated fibers, was most pronounced in areas of on-going pain, intermediate in areas of sensory disturbance and near baseline in more proximal skin of chemotherapy patients. In contrast to mechanical sensibility, thermal thresholds for warm and heat pain detection were normal throughout. Finally, chemotherapy patients showed paradoxical burning pain to skin cooling that was most pronounced in proximal areas of skin thought to be unaffected by the patients, intermediate in the border zone of altered sensibility and least pronounced in areas of on-going pain. These data suggest that taxol produces a neuropathy characterized by pronounced impairment of function in A-beta myelinated fibers, intermediate impairment of A-delta myelinated fibers, and a relative sparing of C-fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.