The phenylalanine–tyrosine–dopa–dopamine pathway provides dopamine to the brain. In this process, tyrosine hydroxylase (TH) is the rate-limiting enzyme that hydroxylates tyrosine and generates levodopa (l-dopa) with tetrahydrobiopterin (BH4) as a coenzyme. Here, we show that oral berberine (BBR) might supply H• through dihydroberberine (reduced BBR produced by bacterial nitroreductase) and promote the production of BH4 from dihydrobiopterin; the increased BH4 enhances TH activity, which accelerates the production of l-dopa by the gut bacteria. Oral BBR acts in a way similar to vitamins. The l-dopa produced by the intestinal bacteria enters the brain through the circulation and is transformed to dopamine. To verify the gut–brain dialog activated by BBR’s effect, Enterococcus faecalis or Enterococcus faecium was transplanted into Parkinson’s disease (PD) mice. The bacteria significantly increased brain dopamine and ameliorated PD manifestation in mice; additionally, combination of BBR with bacteria showed better therapeutic effect than that with bacteria alone. Moreover, 2,4,6-trimethyl-pyranylium tetrafluoroborate (TMP-TFB)-derivatized matrix-assisted laser desorption mass spectrometry (MALDI-MS) imaging of dopamine identified elevated striatal dopamine levels in mouse brains with oral Enterococcus, and BBR strengthened the imaging intensity of brain dopamine. These results demonstrated that BBR was an agonist of TH in Enterococcus and could lead to the production of l-dopa in the gut. Furthermore, a study of 28 patients with hyperlipidemia confirmed that oral BBR increased blood/fecal l-dopa by the intestinal bacteria. Hence, BBR might improve the brain function by upregulating the biosynthesis of l-dopa in the gut microbiota through a vitamin-like effect.
Trimethylamine-N-oxide (TMAO) derived from the gut microbiota is an atherogenic metabolite. This study investigates whether or not berberine (BBR) could reduce TMAO production in the gut microbiota and treat atherosclerosis. Effects of BBR on TMAO production in the gut microbiota, as well as on plaque development in atherosclerosis were investigated in the culture of animal intestinal bacterial, HFD-fed animals and atherosclerotic patients, respectively. We found that oral BBR in animals lowers TMAO biosynthesis in intestine through interacting with the enzyme/co-enzyme of choline-trimethylamine lyase (CutC) and flavin-containing monooxygenase (FMO) in the gut microbiota. This action was performed by BBR’s metabolite dihydroberberine (a reductive BBR by nitroreductase in the gut microbiota), via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway. Oral BBR decreased TMAO production in animal intestine, lowered blood TMAO and interrupted plaque formation in blood vessels in the HFD-fed hamsters. Moreover, 21 patients with atherosclerosis exhibited the average decrease of plaque score by 3.2% after oral BBR (0.5 g, bid) for 4 months (*P < 0.05, n = 21); whereas the plaque score in patients treated with rosuvastatin plus aspirin, or clopidogrel sulfate or ticagrelor (4 months, n = 12) increased by 1.9%. TMA and TMAO in patients decreased by 38 and 29% in faeces (*P < 0.05; *P < 0.05), and 37 and 35% in plasma (***P < 0.001; *P < 0.05), after 4 months on BBR. BBR might treat atherosclerotic plaque at least partially through decreasing TMAO in a mode of action similar to that of vitamins.
BackgroundPioglitazone (PIO), a thiazolidinediones drug, is a well-known anti-diabetic medicine, but its anti-atherosclerotic effects remain controversial. Thus it is important to investigate the effects of PIO on atherogenesis and the relevant mechanisms.MethodsFor in vitro studies, primary cultured or AMP-activated protein kinase (AMPK) inhibited splenocytes were treated with oxidized low density lipoprotein (ox-LDL) or ox-LDL plus PIO. Percentage of T helper 17 (Th17) and regulatory T (Treg) cells were determined by flow cytometry. Expression of AMPK, interleukin-17 (IL-17) and forkhead box P3 (FoxP3) were detected by Western blots. For in vivo studies, apolipoprotein E–deficient (apoE−/−) mice fed with western diet were treated with PIO or vehicle for 8 weeks respectively. Percentage of Th17 and Treg cells in spleen were measured by immunohistochemical analysis. The atherosclerotic lesions were analyzed using oil red O staining, and collagen types I and III in atherosclerotic lesions were stained by Sirius red. Expression of IL-17 and FoxP3 were determined by quantitative polymerase chain reaction.ResultsIn cultured primary splenocytes, PIO dramatically inhibited Th17 and raised Treg. Intriguingly, pharmacological and genetic AMPK inhibitions abolished PIO-induced Treg elevation and Th17 inhibition. Moreover, PIO significantly induced AMPK phosphorylation, decreased IL-17+ and increased FoxP3+ cells in spleen of apoE−/− mice. Finally, PIO did not alter plaque area, but intriguingly, stabilized atherosclerotic plaque through collagen induction in apoE−/− mice. PIO treatment also improved Th17/Treg balance in atherosclerotic lesions.ConclusionsPIO exhibits anti-atherosclerotic effects for stabilization of atherosclerotic plaque through regulating the Th17/Treg balance in an AMPK-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.